2015 Математика и механика № 3(35)

УДК 519.95 DOI 10.17223/19988621/35/2

В.М. Зюзьков

ДОСТАТОЧНЫЕ УСЛОВИЯ СУЩЕСТВОВАНИЯ НЕРАЗРЕШИМЫХ КОСВЕННО РЕФЛЕКСИВНЫХ ПРЕДЛОЖЕНИЙ

Изучаются косвенно рефлексивные предложения в арифметике Пеано (в предположении, что данная теория о-непротиворечива), говорящие о доказуемости или опровержимости. Доказываются достаточные условия существования неразрешимых косвенно рефлексивных предложений.

Ключевые слова: арифметика Пеано, косвенная рефлексия, неразрешимые предложения.

Формула F языка теории первого порядка T называется неразрешимой в T, если ни сама формула F, ни её отрицание $\neg F$ не являются теоремами этой теории. Арифметика Пеано PA является одной из хорошо известных теорий первого порядка и играет важную роль в логике. В теории PA можно построить неразрешимое в этой теории предложение.

Нелогическими символами PA являются константа 0, унарный функциональный символ S (который обозначает функцию следования) и два бинарных функциональных символа + и \times . Для любого неотрицательного целого n терм SS...S0 (S повторяется n раз) будем обозначать n. Такие термы называются n

Курт Гёдель первым построил неразрешимое предложение для теории PA. Он сделал это посредством процедуры, которая сейчас называется арифметизацией.

Пусть U есть объединение трех множеств: множества символов теории T, множества всех выражений (термов и формул) T и множества всех конечных последовательностей выражений T. Пусть N – множество целых неотрицательных чисел и функция g: $U \to N$ инъективна. Функция g называется $apu \phi$ метизацией теории T, если выполнены следующие условия:

- (1) д эффективно вычисляема;
- (2) существует алгоритм, который определяет, принадлежит ли данное положительное целое m множеству значений функции g и, если это так, то алгоритм находит объект $x \in U$ такой, что g(x) = m.

Функция g определяется стандартным способом [1, 2]. Число g(x) называется гёделевым номером объекта x. Если g(x) = n, мы определяем $\lceil x \rceil$ как нумерал n. Это позволяет заменить утверждения о формальной теории эквивалентными теоретико-числовыми предложениями и затем выразить такие предложения в самой формальной теории.

В работе [3] изучались косвенно рефлексивные предложения в *PA* (в предположении, что данная теория ω-непротиворечива [1]), говорящие о доказуемости и/или опровержимости. Рассматривались некоторые совокупности таких предложений, и доказывалось, что среди них существуют неразрешимые предложения. Настоящая работа является продолжением и обобщением [3]. Мы формулируем общие условия и доказываем, что они достаточны для существования неразрешимых косвенно рефлексивных предложений.

Исходным утверждением является следующая теорема о косвенной рефлексивности, доказанная в [3].

Теорема 1. Пусть m – положительное целое число и $B_1, B_2, ..., B_m$ – формулы теории PA, для которых свободные переменные содержатся в списке $x_1, x_2, ..., x_m$. Тогда существуют такие формулы $G_1, G_2, ..., G_m$, что

$$|-G_1 \sim B_1(\lceil G_1 \rceil, \lceil G_2 \rceil, ..., \lceil G_m \rceil),$$

 $|-G_2 \sim B_2(\lceil G_1 \rceil, \lceil G_2 \rceil, ..., \lceil G_m \rceil),$

$$|-G_m \sim B_m(\lceil G_1 \rceil, \lceil G_2 \rceil, \ldots, \lceil G_m \rceil)$$

в теории PA.

Как известно [1], отношение Provable(n, m): «формула с гёделевым номером n является выводимой (доказуемой) в PA и ее доказательство имеет номер m» выразимо в PA некоторой формулой Pr(x, y), т.е.:

- 1) если Provable(n, m) истинно, то |-Pr(n, m),
- 2) если Provable(n, m) ложно, то $[-\neg Pr(\mathbf{n}, \mathbf{m})]$.

Формула $P(\mathbf{n}) \equiv \exists y \ Pr(\mathbf{n}, y)$ выражает следующее свойство: «формула с гёделевым номером n является выводимой (доказуемой) в PA».

Из теоремы 1 при m=1 получаем известную лемму о рефлексии. Пусть B(x) произвольная формула формальной арифметики, имеющая единственную свободную переменную x. Тогда можно построить замкнутую формулу A, такую, что $|-A \sim B(\lceil A \rceil)$. Формула A рефлексивна и «говорит о себе», что она обладает свойством B. В частности, имеется формула G, для которой $|-G \sim \neg P(\lceil G \rceil)$, т.е. G «говорит о себе», что она недоказуема в PA. Гёдель, неявно используя лемму о рефлексии, получил формулу G и доказал, что она неразрешима в PA (предполагая, что PA является Θ -непротиворечивой теорией).

Определение \omega-непротиворечивости [1, с. 158]. Пусть T — теория первого порядка с теми же самыми символами, что и **PA**. Теория T называется ω -непротиворечивой, если для всякой формулы $\varphi(x)$ этой теории из того, что при любом n выполнено $|-_T \varphi(n)$, следует невозможность $|-_T \exists x \neg \varphi(x)$.

Мы говорим, что формула A опровержима в PA, если $\neg A$ доказуема в PA. Раймонд Смаллиан обнаружил формулу R(n), которая выражает следующее свойство: «отрицание формулы с гёделевым номером n доказуемо в PA». Формула $R(\lceil F \rceil)$ «утверждает» опровержимость формулы F. Лемма о рефлексии дает формулу L, для которой $|-L \sim R(\lceil L \rceil)$. Формула Смаллиана L «утверждает» свою собственную опровержимость.. Формула L также неразрешима [4,3].

Будем считать, что арифметика Пеано является ω -непротиворечивой. Это свойство используется при доказательстве следующей леммы.

Лемма 1 [3]. Для любой формулы F теории PA выполнено: 1) $|-P(\lceil F \rceil)$ тогда и только тогда, когда $|-F;2\rangle |-R(\lceil F \rceil)$ тогда и только тогда, когда |-F|.

В силу теоремы 1 имеем, что формулы теории PA, «косвенно утверждающие» собственную доказуемость или опровержимость, существуют. И в некоторых конечных множествах таких формул удается доказать существование неразрешимых формул.

Например, формулы A и B, для которых выполнено

$$|-A \sim R(\lceil B \rceil),$$

 $|-B \sim P(\lceil A \rceil),$

являются неразрешимыми [3].

14 В.М. Зюзьков

Пусть для данных формул $A_1, A_2, ..., A_n, n \ge 1$, выполнено $|-A_i \sim Z_i$ для всех i=1,2,...,n. Причем каждая формула Z_i построена из некоторых формул вида $P(A_j)$ и $R(A_k)$ с помощью пропозициональных связок. Рассмотрим следующую формулу ϕ пропозициональной логики:

$$(A_1 \sim W_1) \& (A_2 \sim W_2) \& \dots \& (A_n \sim W_n),$$

где каждая формула W_i получена из соответствующей формулы Z_i заменой $P(\lceil A_j \rceil)$ на A_j и заменой $R(\lceil A_k \rceil)$ на A_i . Символы A_i трактуются в формуле ϕ как пропозициональные переменные.

Теорема 2 (достаточное условие для неразрешимости). Если формула ϕ является невыполнимой формулой пропозициональной логики, то, по крайней мере, одна из формул A_i неразрешима.

Для доказательства потребуется две леммы. Введем обозначение. Пусть Z – произвольная формула арифметики Пеано, построенная из некоторых формул вида $P(\lceil A_j \rceil)$ и $R(\lceil A_k \rceil)$ с помощью пропозициональных связок. Обозначим через w(Z) формулу, полученную из Z заменой $P(\lceil A_j \rceil)$ на A_j и заменой $R(\lceil A_k \rceil)$ на $\neg A_k$.

Лемма 2. Пусть Z – произвольная формула арифметики Пеано, построенная из некоторых формул вида $P(\lceil A_j \rceil)$ и $R(\lceil A_k \rceil)$ с помощью пропозициональных связок. Тогда если |-Z, то |-w(Z).

Заметим, что тогда из |-Z следует $|-Z \sim w(Z)$. Для этого достаточно воспользоваться тавтологией $\alpha \& \beta \supset (\alpha \sim \beta)$.

Доказательство. Проведем математическую индукцию по построению формулы Z.

Базис индукции. Если формула Z вообще не содержит подформул вида $P(\lceil A_i \rceil)$ и $R(\lceil A_k \rceil)$, то, очевидно, w(Z) = Z. И поэтому утверждение леммы в данном случае выполнено. Рассмотрим случаи, когда формула Z есть $P(\lceil A_i \rceil)$ или $R(\lceil A_i \rceil)$. В первом случае $w(P(\lceil A_i \rceil)) = A_i$. По лемме $1, |-P(\lceil A_i \rceil)$ влечет $|-A_i$. Если же формула Z есть $R(\lceil A_i \rceil)$, то $w(R(\lceil A_i \rceil)) = \neg A_i$. Отношение $|-R(\lceil A_i \rceil)$ влечет $|-\neg A_i$, по лемме 1

Отрицание. Пусть формула Z имеет вид $\neg Z_1$ и по индуктивному предположению $|-Z_1 \sim w(Z_1)$. Имеем также $w(\neg Z_1) = \neg w(Z_1)$. Из $|-\neg Z_1$, используя тавтологию $\neg \alpha \& (\alpha \sim \beta) \supset \neg \beta$, получаем $|-\neg w(Z_1)$.

Конъюнкция. Пусть формула Z имеет вид Z_1 & Z_2 и по индуктивному предположению $|-Z_1 \sim w(Z_1)$ и $|-Z_2 \sim w(Z_2)$. Имеем также $w(Z_1$ & $Z_2) = w(Z_1)$ & $w(Z_2)$. Используя тавтологию

$$\alpha 1 \& \alpha 2 \& (\alpha 1 \sim \beta 1) \& (\alpha 2 \sim \beta 2) \supset (\beta 1 \& \beta 2),$$

из $|-Z_1 \& Z_2$ получаем $|-w(Z_1) \& w(Z_2)$.

Дизьюнкция. Пусть формула Z имеет вид $Z_1 \vee Z_2$ и по индуктивному предположению $|-Z_1 \sim w(Z_1)$ и $|-Z_2 \sim w(Z_2)$. Имеем также $w(Z_1 \vee Z_2) = w(Z_1) \vee w(Z_2)$. Используя тавтологию

$$(\alpha 1 \vee \alpha 2) \& (\alpha 1 \sim \beta 1) \& (\alpha 2 \sim \beta 2) \supset (\beta 1 \vee \beta 2),$$

из $|-Z_1 \vee Z_2$ получаем $|-w(Z_1) \vee w(Z_2)$.

Импликация. Пусть формула Z имеет вид $Z_1\supset Z_2$ и по индуктивному предположению $|-Z_1\sim w(Z_1)$ и $|-Z_2\sim w(Z_2)$. Имеем также $w(Z_1\supset Z_2)=w(Z_1)\supset w(Z_2)$. Используя тавтологию

$$(\alpha 1 \supset \alpha 2) \& (\alpha 1 \sim \beta 1) \& (\alpha 2 \sim \beta 2) \supset (\beta 1 \supset \beta 2),$$

из $|-Z_1 \supset Z_2$ получаем $|-w(Z_1) \supset w(Z_2)$.

Эквиваленция. Пусть формула Z имеет вид $Z_1 \sim Z_2$ и по индуктивному предположению $|-Z_1 \sim w(Z_1)$ и $|-Z_2 \sim w(Z_2)$. Имеем также $w(Z_1 \sim Z_2) = w(Z_1) \sim w(Z_2)$.

Используя тавтологию

$$(\alpha 1 \sim \alpha 2) \& (\alpha 1 \sim \beta 1) \& (\alpha 2 \sim \beta 2) \supset (\beta 1 \sim \beta 2),$$

из $|-Z_1 \sim Z_2$ получаем $|-w(Z_1) \sim w(Z_2)$.

Лемма 3. Если формула A_i разрешима, то $|-A_i \sim Z_i$ влечет $|-A_i \sim w(Z_i)$.

Доказательство. Рассмотрим два случая.

- 1.Пусть $\vdash A_i$. Тогда, используя тавтологию α & $(\alpha \sim \beta) \supset \beta$, получаем $\vdash Z_i$. По лемме 2 имеем $|-w(Z_i)$. Воспользуемся тавтологией $\alpha \& \beta \supset (\alpha \sim \beta)$ и получим $|-A_i \sim w(Z_i).$
- 2. Пусть $|-\neg A_i$. Тогда, используя тавтологию ($\alpha \sim \beta$) $\supset (\neg \alpha \sim \neg \beta)$, из $|-A_i \sim Z_i$ получаем $|-\neg A_i \sim \neg Z_i$. Теперь из $|-\neg A_i$ и $|-\neg A_i \sim \neg Z_i$, с помощью тавтологии α & $(\alpha \sim \beta) \supset \beta$, получаем $|-\neg Z_i$. По лемме 2, имеем $|-\neg w(Z_i)$. Из $|-\neg A_i|$ и $|-\neg w(Z_i)$, воспользовавшись тавтологией $\alpha \& \beta \supset (\alpha \sim \beta)$, получаем $|-\neg A_i \sim \neg w(Z_i)$. И снова, с помощью тавтологии ($\alpha \sim \beta$) \supset ($\neg \alpha \sim \neg \beta$), имеем $|-A_i \sim w(Z_i)$.

Доказательство теоремы 2. От противного допустим, что все формулы A_1 , A_2, \ldots, A_n разрешимы. Так как $|-A_i \sim Z_i$, то формулы $A_i \sim Z_i$ истинны для всех i. Пусть W_i обозначает формулу $w(Z_i)$. По лемме 3 имеем $|-A_i \sim W_i$ для всех i. Если трактовать все A_k , входящие в $A_i \sim W_i$ как пропозициональные переменные, то формула

$$(A_1 \sim W_1) \& (A_2 \sim W_2) \& \dots \& (A_n \sim W_n)$$

является истинной формулой пропозициональной логики, но это противоречит невыполнимости ф. Полученное противоречие доказывает теорему. ■

Введем следующее обозначение: если i – индекс, пробегающий диапазон 1, 2, ..., n, то i+ обозначает i+1 для $i=1,\ldots,n-1$, и i+1 для i=1. Теперь можем сформулировать следствие из теоремы 2.

Следствие 1. Допустим, что для i = 1, ..., n, каждое A_i есть одно из следующих утверждений:

- (i) A_{i+} доказуемо;
- (ii) A_{i+} не доказуемо;
- (iii) A_{i+} опровержимо;
- (iv) A_{i+} не опровержимо.

Пусть количество значений индекса i, для которых A_i утверждает (ii) или (iii), нечетно. Тогда, по крайней мере, одна из формул A_i неразрешима.

Доказательство. Будем доказывать от противного. Пусть все формулы A_i разрешимы. Переведем исходные условия на точный язык. Для i=1,...,n каждое A_i удовлетворяет одному из следующих отношений:

(i)
$$|-A_i \sim P(\lceil A_{i+} \rceil)$$
;
(ii) $|-A_i \sim -P(\lceil A_{i+} \rceil)$;
(iii) $|-A_i \sim R(\lceil A_{i+} \rceil)$;

(ii)
$$|-A_i \sim \neg P(|A_{\underline{i}+}|)$$

(iii)
$$|-A_i \sim R(A_{i+})$$
:

(iv)
$$|-A_i \sim \neg R(\lceil A_{i+} \rceil)$$
.

И количество значений индекса i, для которых A_i удовлетворяют отношениям (ii) или (iii), нечетно. Заменим $P(A_{i+})$ на A_{i+} и $R(A_{i+})$ на A_{i+} . Тогда отношения (i)-(iv) в силу леммы 3 преобразуются в отношения

(I)
$$|-A_i \sim A_{i+};$$

(II)
$$|-A_i \sim \neg A_{i+};$$

(III)
$$|-A_i \sim \neg A_{i+};$$

(IV)
$$|-A_i \sim A_{i+}$$
.

Причем общее количество выражений вида $A_i \sim \neg A_{i+}$ является нечетным.

16 В.М. Зюзьков

Будем рассматривать все A_i как пропозициональные переменные. Чтобы применить теорему 2, рассмотрим формулу ϕ , которая в данном случае есть

$$(A_1 \sim B_2) \& (A_2 \sim B_3) \& \dots \& (A_{n-1} \sim B_n) \& (A_n \sim B_1),$$

где каждое B_k есть A_k или $-A_k$. Так как мы предположили, что все формулы A_i разрешимы, то по теореме 2 формула ϕ должна быть выполнимой.

Удалим из формулы ϕ все эквивалентности вида $A_i \sim A_{i+}$, причем удаляя каждую такую эквивалентность, будем делать перенумерацию переменных так, чтобы соседние переменные по-прежнему имели последовательные номера.

Полученная формула равносильна ф и имеет вид

$$(A_1 \sim \neg A_2) \& (A_2 \sim \neg A_3) \& \dots \& (A_k \sim \neg A_1),$$
 (1)

где k нечетно.

Докажем, что формула (1) не может быть выполнимой. От противного. Пусть формула (1) истинна при некотором распределении истинностных значений переменных A_1, A_2, \ldots, A_k . При этом распределении все эквивалентности в скобках должны иметь значение *истина*. Рассмотрим два возможных истинностных значения для переменной A_1 .

- Пусть A_1 есть *истина*, тогда A_2 *ложь*, A_3 *истина*, A_4 *ложь*, ..., A_k *истина*, так как k нечетно.
- Если же A_1 есть ложь, то A_2 истина, A_3 ложь, A_4 истина, ..., A_k ложь, так как k нечетно.

В любом случае для выполнимости формулы (1) истинностные значения переменных A_k и A_1 должны совпадать, но тогда последняя эквивалентность $A_k \sim \neg A_1$ имеет ложное значение и формула (1) ложна при любом значении A_1 . Поэтому формула (1) невыполнима. Так как формулы (1) и ϕ равносильны, то формула ϕ невыполнима. Полученное противоречие доказывает, что, по крайней мере, одна из формул A_i неразрешима.

Если в формулировке следствия n=1, то тогда мы имеем одну формулу A_1 , для которой выполнено $|-A_1 \sim \neg P(\lceil A_1 \rceil)$ или $|-A_1 \sim R(\lceil A_1 \rceil)$. И из следствия 1 и леммы 1 сразу получаем

Следствие 2 (после Гёделя). Если $\vdash G \sim \neg P(\lceil G \rceil)$, то формулы G и $P(\lceil G \rceil)$ неразрешимы.

Следствие 3 (после Смаллиана). Если $|-L \sim R(\lceil L \rceil)$, то формулы L и $R(\lceil L \rceil)$ неразрешимы.

Замечание. Все чистые теоремы существования неразрешимых косвенно рефлексивных предложений, доказанные в [3], являются частными случаями следствия 1.

Автор благодарит профессора Heinrich Rolletschek (Research Institute for Symbolic Computation, Linz, Austria) за плодотворное обсуждение результатов из [3], вследствие чего появилась настоящая статья.

ЛИТЕРАТУРА

- 1. Мендельсон Э. Введение в математическую логику. М.: Наука, 1976. 320 с.
- 2. *Булос Дж.*, *Джеффри Р*. Вычислимость и логика. М.: Мир, 1994. 396 с.
- Зюзьков В.М. Неразрешимые косвенно рефлексивные предложения // Вестник Томского государственного университета. Математика и механика. 2010. № 1(9). С. 21–33.
- 4. Smullyan R.M. Gödel's Incompleteness Theorem. Oxford: Oxford University Press, 1992.

Zyuz'kov V.M. SUFFICIENT CONDITIONS FOR THE EXISTENCE OF UNDECIDABLE IN-DIRECTLY REFLECTIVE SENTENCES

DOI 10.17223/19988621/35/2

Indirectly reflective sentences in the ω -consistent theory of formal arithmetic are studied. Sufficient conditions for the existence of undecidable indirectly reflective sentences are proved.

Keywords: formal arithmetic, indirect reflexion, undecidable sentences.

ZYUZ'KOV Valentin Mikhailovich (Candidate of Physics and Mathematics, Tomsk State University, Tomsk, Russian Federation)
E-mail: vmz@math.tsu.ru

REFERENCES

- 1. Mendelson E. Introduction to Mathematical Logic. Chapman & Hall, 1998.
- 2. Boolos G. Jeffrey R. Computability and Logic. Cambridge University Press, 1974.
- 3. Zyuz'kov V.M. Nerazreshimye kosvenno refleksivnye predlozheniya. *Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika*, 2010, no. 1(9), pp. 21–33. (in Russian)
- 4. Smullyan R.M. Gödel's Incompleteness Theorem. Oxford, Oxford University Press, 1992.