ром неверно предполагалось, что для каждой APN-функции F такой класс состочит только из функций $F(x\oplus c)\oplus d$, где c,d пробегают \mathbb{F}_2^n . Однако найдены примеры квадратичных функций F от 4 переменных, для которых существуют линейные функции L, прибавление которых к исходной функции F сохраняет множества значений производных по всем направлениям, но при этом $F\oplus L$ не лежит в классе $\{F(x\oplus c)\oplus d:c,d\in\mathbb{F}_2^n\}$. Например, в качестве F можно выбрать APN-функцию $F(x_1,x_2,x_3,x_4)=(x_1x_2,\ x_1x_3\oplus x_2x_4,\ x_2x_3\oplus x_1x_4\oplus x_2x_4,\ x_3x_4),$ а в качестве линейной следующую: $L(x_1,x_2,x_3,x_4)=(x_1\oplus x_2,\ x_2\oplus x_3,\ x_2,\ x_3\oplus x_4).$ Тогда для любого ненулевого $a\in\mathbb{F}_2^4$ верно $B_a(F)=B_a(F\oplus L).$

ЛИТЕРАТУРА

- 1. *Городилова А. А.* Характеризация APN-функций через подфункции // Прикладная дискретная математика. Приложение. 2014. № 7. С. 15–16.
- 2. *Тужилин М. Э.* Почти совершенные нелинейные функции // Прикладная дискретная математика. 2009. № 3. С. 14–20.
- 3. Carlet C. Open questions on nonlinearity and on APN functions // LNCS. 2015. V. 9061. P. 83–107.

УДК 512.552.18

 $DOI\ 10.17223/2226308X/8/10$

ИССЛЕДОВАНИЕ ГРУППЫ БИЕКТИВНЫХ ДИФФЕРЕНЦИРУЕМЫХ ПО МОДУЛЮ p^n ФУНКЦИЙ

А.С. Ивачев

Описана с точностью до изоморфизма группа биективных дифференцируемых по модулю p^n функций, предложен способ поиска сопрягающего элемента в этой группе с помощью решения системы линейных уравнений над \mathbb{Z}_p , а также предложен способ генерации транзитивных функций с помощью биективных дифференцируемых по модулю p^n функций путём сопряжения функции f(x) = x + 1 биективными функциями.

Ключевые слова: $\partial u \phi \phi e p e h u u p y e man no модулю <math>p^n \phi y h k u u n$, биективная $\phi y h k u u n$, транзитивная $\phi y h k u u n$, сопряжение.

Генерация последовательностей больших периодов, состоящих из элементов конечного кольца, является важной задачей в криптографии. Для генерации последовательности может использоваться следующая рекуррентная формула:

$$x_{i+1} = f(x_i), i = 1, 2, \dots,$$

где f — некоторая функция над кольцом \mathbb{Z}_{p^n} .

Возникает проблема выбора f, такой, чтобы она легко вычислялась и генерировала последовательность $x_1x_2\dots$ максимального периода p^n .

Как вариант выбора таких f в [1] предложены и исследованы дифференцируемые по модулю p^n функции, в том числе те из них, которые являются биективными и транзитивными. В частности, построены критерии биективности и транзитивности и получена формула для вычисления обратных биективных дифференцируемых по модулю p^n функций.

В данной работе проведено более глубокое изучение биективных дифференцируемых функций, а также основных задач, в которых данные функции могут быть применимы.

Напомним основные определения и утверждения, связанные с дифференцируемыми по модулю функциями.

Определение 1. Любая функция $f: \mathbb{Z}_p \to \mathbb{Z}_p$ является дифференцируемой функцией по модулю p. Функция $f: \mathbb{Z}_{p^n} \to \mathbb{Z}_{p^n}$ называется дифференцируемой по модулю p^n (n > 1), если:

- 1) $f \mod p^i$ дифференцируемая по модулю p^i функция, $i = 1, \ldots, n-1$;
- 2) $f(x + ap^{n-1}) = f(x) + ap^{n-1}f'(x) \pmod{p^n}$, где f' некоторая функция из \mathbb{Z}_{p^n} в \mathbb{Z}_{p^n} . Функция f' называется производной функции f по модулю p^n .

Класс дифференцируемых функций обозначается D_n .

Пусть

$$A_n = \{f: f \in D_n \land f_{n-1}(x) = 0\};$$

$$B_n = \{f: f(x + ap^{n-1}) \equiv f(x) \pmod{p^n} \land f(x) \equiv 0 \pmod{p^{n-1}}\};$$

$$C_n = \{f: f(x) = x_{n-1}p^{n-1}h'(x), \text{где } h' - \text{производная некоторой функции из } D_n\}.$$

Утверждение 1 [1]. Для любой функции f из D_n существует единственная тройка (f_A, f_B, f_C) , где $f_A \in A_n$, $f_B \in B_n$, $f_C \in C_n$, такая, что $f(x) = f_A(x) + f_B(x) + f_C(x)$. Обратно, для каждой тройки (f_A, f_B, f_C) , где $f_A \in A_n$, $f_B \in B_n$, $f_C \in C_n$, существует функция f из D_n , такая, что $f(x) = f_A(x) + f_B(x) + f_C(x)$.

Определение 2. Дифференцируемая по модулю p^n функция f называется обратимой (или биективной), если существует функция g, такая, что g(f(x)) = x. Функция g называется обратной для функции f.

Определение 3. Дифференцируемая по модулю p^n функция называется транзитивной, если она индуцирует одноцикловую подстановку на \mathbb{Z}_{p^n} .

Будем обозначать группу биективных дифференцируемых по модулю p^n функций с композицией в качестве операции как Bi_n . Пусть отображение $\pi_n: Bi_n \to Bi_{n-1}$ определяется как $\pi_n(f) = f \mod p^{n-1}$. Очевидно, что это гомоморфизм с ядром

$$\operatorname{Ker} \pi_n = \{ f : f(x) = x_0 + x_1 p + \ldots + x_{n-2} p^{n-2} + f_B(x) + f'(x) x_{n-1} p^{n-1}, f_B \in B_n \}.$$

Ядро $\operatorname{Ker} \pi_n$ является группой относительно композиции функций в нем. В дальнейшем эта группа обозначается IB_n .

Пусть
$$\mathbb{L}_p = \langle \{f : \mathbb{Z}_p \to \mathbb{Z}_p : f(x) = ax + p, a \neq 0\}, \circ \rangle.$$

Теорема 1.

$$Bi_n \simeq Bi_{n-1} \rtimes IB_n \simeq Bi_{n-1} \rtimes \bigoplus_{i=1}^{p^{n-1}} \mathbb{L}_p,$$

где при композиции функций в Bi_n компонента \hat{f} из Bi_{n-1} переставляет функции f в IB_n по следующему закону:

$$\phi_{\hat{f}}(f)(x) = x_0 + x_1 p + \dots + x_{n-2} p^{n-2} + f_B(\hat{f}_A(x)) + f'(\hat{f}_A(x)) x_{n-1} p^{n-1},$$

а именно: в сумме $\bigoplus_{i=1}^{p^{n-1}} \mathbb{L}_p$ слагаемое ax+b с номером i ставится на место слагаемого $a^{\hat{f}_A}x+b^{\hat{f}_A}$ с номером $\hat{f}_A(i)$.

Здесь и далее если слагаемое ax+b суммы $\bigoplus_{i=1}^{p^{n-1}} \mathbb{L}_p$ имеет номер i и $f_A \in A_n$, то через $a^{f_A}x+b^{f_A}$ обозначается слагаемое этой суммы с номером $f_A(i)$.

Рассмотрим следующее равенство:

$$u = f^{-1} \circ v \circ f, \tag{1}$$

где $f, v, u \in Bi_n$. Оно фигурирует при рассмотрении следующих задач:

- поиск сопрягающего элемента;
- генерация транзитивных функций с помощью биективных.

Задача поиска сопрягающего элемента — это решение функционального уравнения, которое задаётся равенством (1) при известных u и v и неизвестном f. Искать сопрягающий элемент можно с помощью теоремы 1. Используя равенство

$$Bi_n \simeq Bi_{n-1} \rtimes \bigoplus_{j=1}^{p^{n-1}} \mathbb{L}_p,$$

можно проводить вычисления во второй части полупрямого произведения, если они уже проведены по первой. В \mathbb{L}_p содержатся функции вида ax + b, $a \neq 0$. Соответствен-

но, при решении уравнения (1) для каждого слагаемого суммы $\bigoplus_{i=1}^{p^{n-1}} \mathbb{L}_p$ выполняется выражение

$$v_1 x + v_2 = (f_1^{u_A \circ f_A})^{-1} (u_1^{f_A} (f_1 x + f_2) + u_2^{f_A}) - (f_1^{u_A \circ f_A})^{-1} f_2^{u_A \circ f_A},$$

которое упрощается в систему

$$\begin{cases} v_1 f_1^{u_A \circ f_A} - u_1^{f_A} f_1 = 0, \\ v_2 f_1^{u_A \circ f_A} - u_2^{f_A} + f_2^{u_A \circ f_A} - u_1^{f_A} f_2 = 0. \end{cases}$$

Объединив эти системы для всех слагаемых, получим систему из $2p^{n-1}$ уравнений. Отметим, что она является линейной.

Получившуюся систему можно разбить на две части, одна — только из уравнений, в которых отсутствуют f_2 , вторая — из уравнений, в которых f_2 присутствуют, и решать сначала первую, а затем вторую. Матрица получившейся системы представляет собой сумму перестановочных матриц, т. е. содержит большое число нулей, что может способствовать более быстрому её решению.

Другой задачей, в которой фигурируют биективные дифференцируемые по модулю p^n функции, является генерация транзитивных дифференцируемых по модулю p^n функций. Генерировать транзитивные функции с помощью равенства (1) можно, если положить v транзитивной функцией, и тогда u будет также транзитивной. Например, можно выбрать v(x) = x + 1, и тогда достаточно уметь генерировать биективные функции и вычислять значение обратной функции, чтобы вычислять u. Критерии биективности и формулу для вычисления обратной функции можно найти в [1]. Верна следующая

Теорема 2. Все транзитивные дифференцируемые по модулю p^n функции могут быть получены сопряжением функции f(x) = x+1 биективными дифференцируемыми по модулю p^n функциями.

Таким образом, пробегая по всем биективным функциям, можно предложенным способом получить все транзитивные функции.

Итак, для генерации последовательностей больших периодов биективные дифференцируемые по модулю p^n функции могут быть использованы как сопрягающие для транзитивных функций. Представляют интерес также статистические свойства таких последовательностей. Поэтому группа дифференцируемых по модулю p^n функций заслуживает внимания. Однако пока не описано представление, позволяющее эффективно вычислять данные функции, их реальное использование не практично. Поэтому в дальнейшем стоит задача поиска эффективного представления для функций из класса дифференцируемых по модулю p^n функций или из его подклассов. Предполагается, что данное представление можно получить для этих функций по модулю 2^n , используя элементарные операции, такие, как AND, XOR, RIGHT—SHIFT.

ЛИТЕРАТУРА

 Ивачев А. С. Исследование класса дифференцируемых функций в кольцах классов вычетов по примарному модулю // Прикладная дискретная математика. Приложение. 2014. № 7. С. 19–22.

УДК 512.543.72

DOI 10.17223/2226308X/8/11

ОБРАЩЕНИЕ ДИФФЕРЕНЦИРУЕМЫХ ПЕРЕСТАНОВОК НАД ГРУППОЙ

А.В. Карпов

Вводится понятие дифференцируемой функции над группой с нормальным рядом, обобщающее понятие полиномиальной функции. Для абелевых, нильпотентных и разрешимых групп доказывается формула для нахождения обратной в смысле композиции перестановки к заданной дифференцируемой перестановке.

Ключевые слова: перестановка, полином над группой, дифференцируемая функция.

Пусть задана группа \mathbb{G} с нормальным рядом $\mathbb{G} = H_0 \trianglerighteq H_1 \trianglerighteq \ldots \trianglerighteq H_n = e$. Через Ψ обозначим множество функций, отображающих \mathbb{G} в себя, которые действуют на факторах H_k/H_{k+1} $(k \in \{0, \ldots, n-1\})$ как эндоморфизмы.

Определение 1. Функция $f: \mathbb{G} \to \mathbb{G}$ называется дифференцируемой в точке $a \in \mathbb{G}$ относительно нормального ряда $\mathbb{G} = H_0 \trianglerighteq H_1 \trianglerighteq \ldots \trianglerighteq H_n = e$, если существует функция $\psi_{f,a} \in \Psi$, такая, что для любого члена нормального ряда H_k и любого элемента $h \in H_k$ выполняется равенство

$$f(a+h) \equiv f(a) + \psi_{f,a}(h) \pmod{H_{k+1}}.$$

Функция называется дифференцируемой, если она дифференцируема в каждой точке группы \mathbb{G} . Функция $\psi_{f,a}$ называется производной функции f в точке a.

В качестве примеров дифференцируемых функций можно привести следующие: полиномиальные функции над примарным кольцом вычетов \mathbb{Z}_{p^n} , где в качестве \mathbb{G} выступает $(\mathbb{Z}_{p^n}, +)$, $H_k = p^k \mathbb{Z}_{p^n}$, $\psi_{f,a} = f'(a)$ и $\psi_{f,a}(h) = h * f'(a)$; полиномиальные векторфункции, т. е. системы из m полиномов от m переменных с коэффициентами из \mathbb{Z}_{p^n} , где $\mathbb{G} = (\mathbb{Z}_{p^n}^m, +)$, $\psi_{f,a}$ совпадает с матрицей частных производных, вычисленных в точке a;