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Introduction
Let n and m be positive integers, p be a prime number, and f1, . . . , fn be polynomials

in n variables with integer coefficients. Consider a recurrence sequence

f 0(x) + pmZn, f 1(x) + pmZn, f 2(x) + pmZn, . . . ,

where x ∈ Zn, f(x) = (f1(x), . . . , fn(x)), f 0(x) = x, and fk(x) = f(fk−1(x)) for all
positive k. Denote it by s(f,m, x). The sequence s(f,m, x) is said to be purely periodic if
there exists a positive integer d such that fd(x) ≡ x mod pmZn. In this case, the smallest d
is called the period of s(f,m, x) and is denoted by τ(f,m, x).

Further, the function on Zn/pmZn induced by f is denoted by [f ]m. Clearly, this function
is a permutation iff the sequence s(f,m, x) is purely periodic for all x ∈ Zn.

Permutations induced by polynomials modulo prime powers are considered in [1 – 3].
They are characterized in [1]. Transitive polynomial permutations are described in [1, 2].
The cycle structure of permutations induced by univariate polynomials over Galois rings is
investigated in [3]. In this paper, we extend this result to polynomials in several variables
over the ring of integers modulo pm. Namely, we derive an upper bound on the period
length τ(f,m, x) under the condition that the sequence s(f,m, y) is purely periodic for
each y ∈ x+ pZn.

This paper is organized as follows. In section 1, we formulate Theorem 1. This theorem
gives an upper bound on the value of τ(f,m, x). In section 2, we prove auxiliary Lemmas 1
and 2. In section 3, we prove the theorem.

1. Main results
We begin with some notation. Let Mn be the ring of (n× n)-matrices over Z with the

identity matrix E. For a matrix A, let det(A) denote its determinant. If det(A) 6≡ 0 mod pZ,
then there exists a positive integer k such that Ak ≡ E mod pMn. The smallest integer with
this property is denoted by ordp(A). By definition, put

Jf (x) =
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and Jτf (x) = Jf (f
0(x)) · · · Jf (f τ−1(x)) for a positive integer τ . The matrix Jf (x) is called

the Jacobi matrix and the determinant det(Jf (x)) is called the Jacobian of the function f
at the point x.

The aim of this paper is to prove the following result.
Theorem 1. Let x be a tuple in Zn and m be a positive integer such that m > 1.

Suppose the sequence s(f, 1, x) is purely periodic and τ1 = τ(f, 1, x); then the following
statements hold.

1) If the sequence s(f,m, y) is purely periodic for every y ∈ x+ pZn, then

det(Jτ1f (x)) 6≡ 0 mod pZ.

2) If det(Jτ1f (x)) 6≡ 0 mod pZ and y ∈ x + pZn, then the sequence s(f,m, y) is purely
periodic and the following relation holds:

τ(f,m, y) | τ1 · pm−1 · ordp(J
τ1
f (x)).

3) If det(Jτ1f (x)) 6≡ 0 mod pZ and det(Jτ1f (x) − E) 6≡ 0 mod pZ, then, for every
y ∈ x+ pZn, the following relation holds:

τ(f,m, y) | τ1 · pm−2 · ordp(J
τ1
f (x)).

We will prove Theorem 1 in section 3.
Remark 1. We have ordp(A) 6 pn−1 for each A ∈Mn such that det(A) 6≡ 0 mod pZ.

Indeed, ordp(A) is equal to the period of the sequence of nonzero polynomials

x0 mod mA(x), x1 mod mA(x), x2 mod mA(x), . . .

from the ring Z/pZ [x], where mA(x) is the minimal polynomial of the matrix A over the
field Z/pZ. Since degmA 6 n, there are less than pn distinct polynomials here.)

Thus, we obtain

τ(f,m, y) 6 τ1 · pk(pn − 1) 6 pn · pk(pn − 1),

where k = m− 1 in conditions of statement 2 and k = m− 2 in conditions of statement 3
in Theorem 1.

Remark 2. Let f be given by f(z) = z · A for all z ∈ Zn, where A ∈ Mn and
det(A) 6≡ 0 mod pZ. In this case, s(f,m, x) is the congruential sequence

x+ pmZn, x · A+ pmZn, x · A2 + pmZn, . . .

In conditions of statement 2, we have τ1 | ordp(A) and Jτ1f (x) = Aτ1 . Hence,

τ(f,m, y) 6 τ1 · pm−1 · ordp(A
τ1) = pm−1 · ordp(A) 6 pm−1(pn − 1).

In [4], this bound is proved and congruential sequences of period pm−1(pn − 1) are
constructed.

Remark 3. Let expp(Mn) denote the exponent of the multiplicative group of the ring
Mn/pMn. Suppose that [f ]m is a permutation of order τ(f,m). Then we have

τ(f,m) | τ(f, 1) · pk · expp(Mn),

where k = m− 1 in conditions of statement 2 and k = m− 2 in conditions of statement 3.
The value of expp(Mn) is determined in [5, 6].

To prove Theorem 1, we need two auxiliary lemmas.
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2. Two Lemmas
We use the notation U(J, k) = E + J + . . .+ Jk−1.
Lemma 1. Let l, k, τ, τ1 be positive integers and x, y, z, w be tuples in Zn such that

x ≡ y mod pZn. Suppose the sequence s(f, 1, x) is purely periodic and τ(f, 1, x) | τ1. Then
the following statements hold.

1) fk(y + plz) ≡ fk(y) + plz · Jkf (x) mod pl+1Zn.
2) If f τ (y) = y + plw and τ1 | τ , then

fkτ (y + plz) ≡ y + plw · U(Jτ1f (x)σ, k) + plz · Jτ1f (x)kσ mod pl+1Zn,

where σ = τ/τ1.
Proof. It is well known (see, for example, [1]) that

f(y + plz) ≡ f(y) + plz · Jf (y) mod pl+1Zn.

Using this formula, we get

f 2(y + plz) ≡ f(f(y) + plz · Jf (y)) ≡ f 2(y) + plz · Jf (y) · Jf (f(y)) ≡
≡ f 2(y) + plz · J2

f (y) mod pl+1Zn;

f 3(y + plz) ≡ f(f 2(y) + plz · J2
f (y)) ≡ f 3(y) + plz · J2

f (y) · Jf (f 2(y)) ≡
≡ f 3(y) + plz · J3

f (y) mod pl+1Zn;

. . .

fk(y + plz) ≡ fk(y) + plz · Jkf (y) mod pl+1Zn.

Here, take Jkf (x) in place of Jkf (y). We claim that this replacing is correct. Indeed, since

x ≡ y, f(x) ≡ f(y), . . . , fk−1(x) ≡ fk−1(y) mod pZn,

we have

Jf (x) ≡ Jf (y), Jf (f(x)) ≡ Jf (f(y)), . . . , Jf (f
k−1(x)) ≡ Jf (f

k−1(y)) mod pMn.

Hence, Jkf (y) ≡ Jkf (x) mod pMn and plz · Jkf (y) ≡ plz · Jkf (x) mod pl+1Zn. This proves the
statement 1. Let us prove the statement 2. Note that the sequence

Jf (x) mod pMn, Jf (f(x)) mod pMn, Jf (f
2(x)) mod pMn, . . .

is purely periodic and its period divides τ1. Hence, Jτf (x) ≡ Jτ1f (x)σ mod pZn. Using the
statement 1, we get

f τ (y + plz) ≡ f τ (y) + plz · Jτ1f (x)σ ≡ y + plw + plz · Jτ1f (x)σ ≡
≡ y + plw · U(Jτ1f (x)σ, 1) + plz · Jτ1f (x)σ mod pl+1Zn.

In the same manner, we can see that

f 2τ (y + plz) ≡ y + plw · U(Jτ1f (x)σ, 2) + plz · Jτ1f (x)2σ mod pl+1Zn,
f 3τ (y + plz) ≡ y + plw · U(Jτ1f (x)σ, 3) + plz · Jτ1f (x)3σ mod pl+1Zn,

. . .

fkτ (y + plz) ≡ y + plw · U(Jτ1f (x)σ, k) + plz · Jτ1f (x)kσ mod pl+1Zn.

This completes the proof.



60 N. G. Parvatov

Lemma 2. Let r be a positive integer. Suppose J ∈ Mn and det(J) 6≡ 0 mod pZ.
Then the following statements hold.

1) U(J, p · ordp(J) · r) ≡ 0 mod pMn.
2) If det(J − E) 6≡ 0 mod pZ, then U(J, ordp(J) · r) ≡ 0 mod pMn.
Proof. Clearly, if i ≡ j mod ordp(J), then J i ≡ J j mod pMn. Hence,

U(J, p · ordp(J) · r) ≡ p · r · U(J, ordp(J)) ≡ 0 mod pMn

and statement 1 holds. Further, for every positive integer k we have

(J − E)U(J, k) = Jk − E.

For k = ordp(J) · r, this gives

(J − E)U(J, ordp(J) · r) ≡ 0 mod pMn.

If det(J − E) 6≡ 0 mod pZ, then the matrix J − E is invertible modulo pMn. In this case,
U(J, ordp(J) · r) ≡ 0 mod pMn.

3. Proof of Theorem 1
Suppose that, for every y ∈ x+ pZn, the sequence s(f,m, y) is purely periodic; then the

sequence s(f, 2, y) is purely periodic too. We may choose a positive integer k such that the
relation τ(f, 2, y) | kτ1 holds for each y ∈ x+ pZn. This means that

fkτ1(x+ pz) ≡ x+ pz mod p2Zn

for all z ∈ Zn. At the same time, by statement 2 of Lemma 1, we have

fkτ1(x+ pz) ≡ x+ pw · U(Jτ1f (x), k) + pz · Jτ1f (x)k mod p2Zn,

where pw = f τ1(x)− x. If we take z = 0, we have pw · U(Jτ1f (x), k) ≡ 0 mod p2Zn and

fkτ1(x+ pz) ≡ x+ pz · Jτ1f (x)k ≡ x+ pz mod p2Zn

for all z ∈ Zn. This implies that

pz · Jτ1f (x)k ≡ pz mod p2Zn and z · Jτ1f (x)k ≡ z mod pZn

for all z. Hence, Jτ1f (x)k ≡ E mod pMn and (det(Jτ1f (x)))k ≡ 1 mod pZ. Thus, det(Jτ1f (x)) 6≡
6≡ 0 mod pZ. We have proved the first statement of Theorem 1.

Assume det(Jτ1f (x)) 6≡ 0 mod pZ and y ∈ x+ pZn. Let

τl =

{
τ1 · pl−1 · ordp(J

τ1
f (x)), if det(Jτ1f (x)− E) ≡ 0 mod pZ,

τ1 · pl−2 · ordp(J
τ1
f (x)), if det(Jτ1f (x)− E) 6≡ 0 mod pZ

for all l > 2. Suppose inductively that the following relation holds:

f τl(y) ≡ y mod plZn,

where l > 1. Then using Lemma 1, we obtain

f τl+1(y) ≡ y + pw · U(Jτ1f (x)σ, k) mod pl+1Zn,
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where pw = f τl(y)− y, σ = τl/τ1, and k = τl+1/τl. For l = 1, we have σ = 1 and

k =

{
p · ordp(J

τ1
f (x)), for det(Jτ1f (x)− E) ≡ 0 mod pZ,

1 · ordp(J
τ1
f (x)), for det(Jτ1f (x)− E) 6≡ 0 mod pZ.

For l > 2, we have ordp(J
τ1
f (x)) |σ and p | k.

Using Lemma 2, we get U(Jτ1f (x)σ, k) ≡ 0 mod pMn and f τl+1(y) ≡ y mod plZn for all
l > 1. Thus, for every l > 1, the sequence s(f, l, y) is purely periodic and τ(f, l, y) | τl.
We take l = m to complete the proof.
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