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Introduction

Let n and m be positive integers, p be a prime number, and fi,..., f, be polynomials
in n variables with integer coefficients. Consider a recurrence sequence

z) +pmz", fH(x) +p™mZ®, f2(x)+p"Z", ...,

where z € Z", f(z) = (fi(z),..., fo(2)), fO(x) = z, and f*¥(z) = f(f*(x)) for all
positive k. Denote it by s(f,m,z). The sequence s(f, m,z) is said to be purely periodic if
there exists a positive integer d such that f¢(x) = 2 mod p™Z™. In this case, the smallest d
is called the period of s(f,m,z) and is denoted by 7(f, m,x).

Further, the function on Z" /p™Z"™ induced by f is denoted by [f],,. Clearly, this function
is a permutation iff the sequence s(f, m,z) is purely periodic for all z € Z".

Permutations induced by polynomials modulo prime powers are considered in [1-3|.
They are characterized in [1]. Transitive polynomial permutations are described in [1, 2.
The cycle structure of permutations induced by univariate polynomials over Galois rings is
investigated in [3]. In this paper, we extend this result to polynomials in several variables
over the ring of integers modulo p™. Namely, we derive an upper bound on the period
length 7(f,m,z) under the condition that the sequence s(f, m,y) is purely periodic for
each y € x + pZ™.

This paper is organized as follows. In section 1, we formulate Theorem 1. This theorem
gives an upper bound on the value of 7(f, m,x). In section 2, we prove auxiliary Lemmas 1
and 2. In section 3, we prove the theorem.

1. Main results
We begin with some notation. Let M, be the ring of (n x n)-matrices over Z with the
identity matrix E. For a matrix A, let det(A) denote its determinant. If det(A) # 0 mod pZ,
then there exists a positive integer k such that A¥ = F mod pM,,. The smallest integer with
this property is denoted by ord,(A). By definition, put

dfl dfn

d_:cl(x) d—ml(x)
Jp(z) = : :

dfi d fn

az, @) dz, P



58 N. G. Parvatov

and J7(z) = Jp(fO(x))--- Jp(f7'(x)) for a positive integer 7. The matrix Jy(z) is called
the Jacobi matriz and the determinant det(J(x)) is called the Jacobian of the function f
at the point z.

The aim of this paper is to prove the following result.

Theorem 1. Let x be a tuple in Z™ and m be a positive integer such that m > 1.
Suppose the sequence s(f,1,x) is purely periodic and 7, = 7(f, 1, x); then the following
statements hold.

1) If the sequence s(f,m,y) is purely periodic for every y € = + pZ", then
det(J3 (z)) # 0 mod pZ.
2) If det(Jf'(z)) # 0 mod pZ and y € x + pZ", then the sequence s(f,m,y) is purely
periodic and the following relation holds:
T(fimy) |7 p™ T ordy (J7 ().
3) If det(Jf'(z)) # OmodpZ and det(J;'(z) — E) # 0mod pZ, then, for every
y € x + pZ", the following relation holds:

T(fomy) [ p™ 72 ordy (J7 (2))
We will prove Theorem 1 in section 3.

Remark 1. We have ord,(A) < p"—1 for each A € M, such that det(A) # 0 mod pZ.
Indeed, ord,(A) is equal to the period of the sequence of nonzero polynomials

2" mod m(x), ' mod ma(z), 2 mod ma(x), ...

from the ring Z/pZ |x], where m4(z) is the minimal polynomial of the matrix A over the
field Z/pZ. Since degmy < n, there are less than p™ distinct polynomials here.)
Thus, we obtain

T(fimey) <7 Pt —1) <pt (" - 1),

where k = m — 1 in conditions of statement 2 and k£ = m — 2 in conditions of statement 3
in Theorem 1.

Remark 2. Let f be given by f(z) = z- A for all z € Z", where A € M,, and
det(A) #Z 0 mod pZ. In this case, s(f,m,z) is the congruential sequence

z+pnZ", x- A+ pnZt, x- A2+ ™72, ...
In conditions of statement 2, we have 71 [ord,(A) and J{'(z) = A™. Hence,

T(fa m, y) < T - pm_l . OI“dp(ATl) = pm_l . Ol"dp<A) < pm—l(pn _ 1)

In [4], this bound is proved and congruential sequences of period p™~!(p" — 1) are
constructed.

Remark 3. Let exp,(M,) denote the exponent of the multiplicative group of the ring
M., /pM,,. Suppose that [f],, is a permutation of order 7(f, m). Then we have

T(f’ m) | T(f7 1) ) pk ’ epr(Mn)7

where kK = m — 1 in conditions of statement 2 and k& = m — 2 in conditions of statement 3.
The value of exp,(M,,) is determined in [5, 6].

To prove Theorem 1, we need two auxiliary lemmas.
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2. Two Lemmas
We use the notation U(J, k) = E+ J + ...+ Jt L

Lemma 1. Let [, k, 7,7 be positive integers and z,y, z, w be tuples in Z" such that
x = y mod pZ™. Suppose the sequence s(f,1,x) is purely periodic and 7(f, 1, )| 7. Then
the following statements hold.

1) f*y+p'2) = fHy) +p'z - Jf(x) mod p™'Z".
2) If f"(y) =y + p'w and 7, | 7, then

fkT(y +plZ> =Y —|—plw . U(J}'l (x)o” ]{3) —|—plZ . J}ﬁ (I)ko mod pl—i-IZn7

where o = 7/7.

Proof. 1t is well known (see, for example, [1]) that

fly+p'2) = fy) +p'z- Jp(y) mod p'*'z".

Using this formula, we get

Ply+p2) = f(fy) +p'2- Jrw) = )+ 0’z Ti(y) - T (f(y) =

(y) +p'z - J;(y) mod p"'Z"™;

(y)
= f?

Ply+0'2) = F(FP) +p'2- T3 ) = Ply) +0'2- T3 ) - () =
= f*(y) +p'z - J}(y) mod p*'Z";

Fy+p'2) = fFfy) +p'z - Jf(y) mod p'*'Z".
Here, take J ]’? (x) in place of J ]’f(y) We claim that this replacing is correct. Indeed, since
=y, fl2)=fy), ..., [ (2) = [ (y) mod pZ",
we have
Tr(x) = Jp(y), Jr(f(@) = Te(f W), - T ("7 (@) = J;(/*7 () mod pM,.

Hence, J§(y) = J§(z) mod pM, and p'z - J§(y) = p'z - J§(z) mod p'*'Z". This proves the
statement 1. Let us prove the statement 2. Note that the sequence

Jp(x) mod pM,, J¢(f(x)) mod pM,, J;(f*(x)) mod pM,,

is purely periodic and its period divides 7. Hence, J7(z) = J;'(z)” mod pZ". Using the
statement 1, we get

frly+p'2)=fly) +p'z- TP (@) =y +pw+p'z TP (2)” =
=y+pw- U(J (x)7, 1) +pz- Jit(z)? mod p'*t1z".

In the same manner, we can see that

fQT(y +plz) =y _|_plw . U(J}'l (ZL‘)U, 2) +pl2 . J}'l (:L')2U mod pl+IZn7
f3T(y —i-pl,z) =y + plw - U(JJ? (2)7,3) +plz- J}'I (x)Bcr mod p1Z",

iy +p'2) =y +rw- U(Jf ()7, k) +plz- J}l(x)’w mod pH1z".

This completes the proof. m
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Lemma 2. Let r be a positive integer. Suppose J € M, and det(J) #Z 0 mod pZ.
Then the following statements hold.

1) U(J,p-ordy(J)-r) =0 mod pM,,.
2) If det(J — E) # 0 mod pZ, then U(J,ord,(J) - r) = 0 mod pM,,.
Proof. Clearly, if i = j mod ord,(J), then J* = J7 mod pM,,. Hence,

U(J,p-ordy(J)-r)=p-r-U(J,ord,(J)) = 0 mod pM,
and statement 1 holds. Further, for every positive integer k we have
(J—E)U(J,k)=J" - E.
For k = ord,(J) - r, this gives
(J—E)U(J,ord,(J) - r) = 0 mod pM,,.

If det(J — E) # 0 mod pZ, then the matrix J — F is invertible modulo pM,,. In this case,
U(J,ord,(J) - r) = 0 mod pM,,. m

3. Proof of Theorem 1

Suppose that, for every y € x + pZ", the sequence s(f, m,y) is purely periodic; then the
sequence s(f,2,y) is purely periodic too. We may choose a positive integer k such that the
relation 7(f,2,y) | k7 holds for each y € = + pZ". This means that

¥ (z + p2) = 2 + pz mod p*Z"
for all z € Z". At the same time, by statement 2 of Lemma 1, we have
ffi(z+p2)=a+pw- U(Jf (x),k) +pz- Jf (z)* mod p*Z™,
where pw = f™(z) — 2. If we take z = 0, we have pw - U(J}'(2), k) = 0 mod p°Z" and
iz +p2)=a+pz- J (z)F = 2 4+ pz mod p*Z"
for all z € Z™. This implies that
pz - J§ (z)* = pz mod p?Z" and z - J (z)* = 2 mod pZ"

for all z. Hence, J7' (2)* = E mod pM,, and (det(J7' (x)))* = 1 mod pZ. Thus, det(J}* (z)) #
=% 0 mod pZ. We have proved the first statement of Theorem 1.
Assume det(J' (z)) #Z 0 mod pZ and y € x + pZ". Let

__mn -p Tt ord, (J5 (), if det(JF (x) — E) = 0 mod pZ,
R Pl ord,(J7' (x)), if det(J}'(z) — E) # 0 mod pZ

for all [ > 2. Suppose inductively that the following relation holds:
f™(y) = y mod p'Z",
where [ > 1. Then using Lemma 1, we obtain

[ (y) =y + pw - U(J} (2)7, k) mod p™*'Z",
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where pw = f(y) —y, 0 = 7;/7, and k = 741 /7. For [ = 1, we have 0 = 1 and

b p-ord,(Ji' (z)), for det(J7 (z) — E) = 0 mod pZ,
1-ord,(Jf'(z)), for det(J7'(z)— E) # 0 mod pZ.

For | > 2, we have ord,(Jf'(z))[o and p| k.

Using Lemma 2, we get U(J;'(z)?, k) = 0 mod pM,, and f7+(y) = y mod p'Z" for all
[ > 1. Thus, for every [ > 1, the sequence s(f,l,y) is purely periodic and 7(f,l,y) | 7.
We take | = m to complete the proof. m
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