2016 Математика и механика № 3(41)

УДК 512.541 DOI 10.17223/19988621/41/4

А.Р. Чехлов

ВПОЛНЕ ИНЕРТНЫЕ ПОДГРУППЫ ВПОЛНЕ РАЗЛОЖИМЫХ ГРУПП КОНЕЧНОГО РАНГА И ИХ СОИЗМЕРИМОСТЬ

Показано, что каждая вполне инертная подгруппа вполне разложимой группы G конечного ранга соизмерима с некоторой вполне инвариантной подгруппой тогда и только тогда, когда типы прямых слагаемых ранга 1 группы G либо равны, либо несравнимы, причем все прямые слагаемые ранга 1 группы G не делятся ни на одно простое число p.

Ключевые слова: фактор-группа, вполне инвариантная подгруппа, соизмеримые подгруппы, делимая оболочка, ранг группы.

Все группы, если специально не оговорено, предполагаются абелевыми. Напомним, что подгруппа H группы G называется $uucmo\check{u}$, если $H \cap nG = nH$ для каждого натурального n; вполне инвариантной, если $\phi H \subseteq H$ для всякого ϕ из кольца эндоморфизмов E(G) группы G. Подгруппа H группы G называется вполне *инертной*, если фактор-группа $(H + \phi H)/H$ конечна (эквивалентно подгруппа $H \cap \phi H$ имеет конечный индекс в ϕH) для всякого $\phi \in E(G)$; если это свойство выполнено только для фиксированного ϕ , то подгруппа H называется ϕ -инертной. Ясно, что каждая конечная подгруппа и подгруппа, имеющая конечный индекс в некоторой вполне инвариантной подгруппе, являются вполне инертными. Если H – чистая подгруппа группы без кручения G, то фактор-группа G/H также является группой без кручения. Отсюда следует, что все чистые вполне инертные подгруппы групп без кручения вполне инвариантны. Сумма и пересечение двух вполне инертных подгрупп снова являются вполне инертными подгруппами [1, лемма 2.2]; в случае же бесконечного семейства вполне инертных подгрупп ни их сумма, ни их пересечение вполне инертными подгруппами в общем случае не являются [1, пример 2.7]. Подгруппы H, K произвольной (в том числе и некоммутативной) группы G называются соизмеримыми, если подгруппа $K \cap H$ имеет конечный индекс в Н и в К. Ясно, что в группе без кручения чистые соизмеримые подгруппы совпадают.

Вполне инертные подгруппы абелевых групп изучались в [1–3]. Соизмеримость является отношением эквивалентности [2, лемма 2.3]. Ясно, что подгруппа H группы G вполне инертна тогда и только тогда, когда H соизмерима с $H + \varphi H$ для каждого $\varphi \in E(G)$. Подгруппа, соизмеримая с некоторой вполне инертной подгруппой, сама является вполне инертной [1, следствие 2.9]. Согласно [2], всякая вполне инертная подгруппа свободной группы соизмерима с некоторой вполне инвариантной подгруппой; а в [3] показано, что всякая вполне инертная подгруппа p-группы, разложимой в прямую сумму циклических групп, также соизмерима с некоторой вполне инвариантной подгруппой; делимые группы таким свойством в общем случае не обладают [1]. В [3, теорема 4.2] построен пример сепарабельной p-группы континуальной мощности, содержащей вполне инертные подгруппы, не соизмеримые с вполне инвариантными подгруппами.

В [4–7] и в др. работах исследовались *инертные* подгруппы некоммутативных групп (согласно [4], термин *инертная подгруппа* предложен профессором О. Кегелем), т.е. такие подгруппы H группы G, что $H \cap H^g$ имеет конечный индекс в H для любого $g \in G$, где H^g – подгруппа, сопряженная с H при помощи элемента g. Интересный пример инертной подгруппы — подгруппа $SL(n,\mathbb{Z})$ в $SL(n,\mathbb{Q})$ [4]. Каждая нормальная подгруппа инертна; всякая подгруппа конечного индекса из нормальной подгруппы инертна; и, более общо, подгруппы, соизмеримые с инертными подгруппами, сами инертны.

Отметим также, что в [8] изучались такие автоморфизмы ϕ абелевой группы G, что H и ϕH соизмеримы для всякой подгруппы H группы G.

Если B, G – группы и X – непустое подмножество в B, то через $Hom\ (B,G)X$ обозначим подгруппу в G, порожденную всеми подмножествами fX, где $f \in Hom\ (B,G)$.

Некоторые примеры вполне инертных подгрупп построены в [1–3], приведем также следующие.

Пример 1 [1, лемма 2.3]. В группе без кручения G конечного ранга всякая конечно порожденная подгруппа H максимального ранга вполне инертна.

Действительно, фактор-группа G/H периодична, поэтому если $\varphi \in E(G)$, то фактор-группа $\varphi H/(H \cap \varphi H)$ как конечно порожденная периодическая группа конечна.

Пример 2. Пусть A — группа без кручения, p, q — различные простые числа, $pA \neq A, qA \neq A, u G = (\bigoplus_{\alpha} A) \oplus (\bigoplus_{\beta} A), где \alpha u \beta$ — равные бесконечные кардиналы. Тогда подгруппа $H = (\bigoplus_{\alpha} pA) \oplus (\bigoplus_{\beta} qA)$ не является вполне инертной.

Имеем $|G/H| \ge \aleph_0$, и легко строится эндоморфизм ϕ группы G со свойством $H + \phi H = G$.

Пример 3. В группе без кручения G ранга 1 каждая ее подгруппа H является вполне инертной.

Действительно, всякий эндоморфизм ϕ группы G действует как умножение на некоторое рациональное число m/n. Поэтому $n(H+\phi H)\subseteq H$. Значит, факторгруппа $(H+\phi H)/H\cong \phi H/(H\cap \phi H)$ конечна как ограниченный гомоморфный образ группы ϕH ранга ≤ 1 .

В [1, определение 1.3] абелева группа называется *инертной*, если она вполне инертна в своей делимой оболочке. Поскольку группа существенна в своей делимой оболочке, то из инъективности делимых групп следует, что инертные группы совпадают с классом групп, являющихся вполне инертными подгруппами в каждом своем существенном расширении. Пример 3 отражает тот факт, что всякая группа без кручения ранга 1 инертна [1, пример 4.7]. Группа без кручения инертна тогда и только тогда, когда она является однородной вполне разложимой группой конечного ранга [1, теорема 4.9].

Пример 4. Пусть G – группа без кручения ранга 1. Тогда следующие условия эквивалентны:

- а) всякая вполне инертная подгруппа группы G соизмерима c некоторой вполне инвариантной подгруппой;
 - b) всякая подгруппа группы G является вполне инвариантной;
 - c) $pG \neq G$ для каждого простого числа p.
- а) \Rightarrow с). Если pG = G, то всякая ненулевая вполне инвариантная подгруппа группы G также p-делима, поэтому она не может быть соизмеримой с циклической подгруппой группы G, которая согласно примеру 3 вполне инертна. c) \Rightarrow b).

Если $pG \neq G$ для всякого простого числа p, то кольцо эндоморфизмов группы G изоморфно кольцу целых чисел \mathbb{Z} , поэтому всякая подгруппа группы G вполне инвариантна. Импликация $b \Rightarrow a$ очевидна.

Итак, во всякой группе без кручения ранга 1, p-делимой хотя бы для одного простого числа p, имеются вполне инертные подгруппы, не соизмеримые с вполне инвариантными подгруппами.

Пример 5. Пусть H – вполне инертная подгруппа группы A, не соизмеримая ни c одной ее вполне инвариантной подгруппой; B – такая группа, что Hom(B,A) = 0. Тогда $H \oplus B$ – вполне инертная подгруппа группы $G = A \oplus B$, не соизмеримая ни c одной вполне инвариантной подгруппой группы G.

Хорошо известно, что делимая часть D=D(G) всякой группы G всегда выделяется прямым слагаемым $G=D\oplus R$ (R- редуцированная часть группы G); D определяется однозначно, а R- с точностью до изоморфизма. Если X- вполне инвариантная подгруппа в G, то $X=(D\cap X)\oplus (R\cap X)$. Из инъективности делимых групп следует, что если хотя бы одна из подгрупп $D\cap X$ или $R\cap X$ не является периодической, то $D\cap X=D$. Для вполне инертных подгрупп это свойство уже не справедливо.

Пример 6. а) Пусть $G = \mathbb{Q} \oplus R$, где $\mathbb{Q} - a \partial д$ итивная группа рациональных чисел (т.е. делимая группа без кручения ранга 1), R - pedуцированная группа без кручения ранга 1, $0 \neq a \in \mathbb{Q}$ и $0 \neq b \in R$. Тогда подгруппа $H = \langle a \rangle \oplus \langle b \rangle$ является вполне инертной.

- b) Пусть $G = \mathbb{Q} \oplus \mathbb{Z}_{p^{\infty}}$, где $\mathbb{Z}_{p^{\infty}}$ квазициклическая p-группа (т.е делимая p-группа ранга 1), $0 \neq a \in \mathbb{Q}$ и X нетривиальная подгруппа в $\mathbb{Z}_{p^{\infty}}$. Тогда подгруппа $H = \langle a \rangle \oplus X$ является вполне инертной.
- c) Пусть $G = \mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}$, где \mathbb{Z} аддитивная группа целых чисел и X нетривиальная подгруппа в $\mathbb{Z}_{p^{\infty}}$. Тогда подгруппа $H = X \oplus \mathbb{Z}$ является вполне инертной.
- d) Пусть $G = \mathbb{Z}_{p^{\infty}} \oplus A$, где группа A не имеет ненулевых p-делимых факторгрупп. Тогда подгруппа A вполне инертна в G.

Действительно, во всех трех первых случаях подгруппа H существенна в G, и в случае а) H – прямая сумма двух бесконечных циклических групп, в случаях b) и с) – прямая сумма бесконечной циклической группы и циклической p-группы. Поэтому для всякого $\varphi \in E(G)$ фактор-группа $\varphi H/(H \cap \varphi H)$ является ограниченной группой конечного ранга, такая группа конечна. d) Следует из того, что fA – конечная подгруппа в \mathbb{Z}_{p^∞} для каждого $f \in \operatorname{Hom}(A, \mathbb{Z}_{p^\infty})$.

Пример 7. Пусть $A \ncong \mathbb{Z}$ — группа без кручения ранга 1, кольцо эндоморфизмов которой изоморфно \mathbb{Z} . Тогда если $0 \ne a \in A$ и $H = \langle a \rangle \oplus \mathbb{Z}$, то H является вполне инертной подгруппой в $G = A \oplus \mathbb{Z}$, не соизмеримой ни с какой вполне инвариантной подгруппой группы G.

Подгруппа H вполне инертна согласно примеру 1. Если теперь F – вполне инвариантная подгруппа, соизмеримая H, то $H/(F\cap H)$ – конечная группа, поэтому $n\mathbb{Z}\subseteq F$ для некоторого натурального n. Откуда $nG\subseteq F$. Имеем $nG\cap H=(nA\cap\langle a\rangle)\oplus n\mathbb{Z}$, поэтому $nG/(nG\cap H)\cong nA/(nA\cap\langle a\rangle)$. Фактор-группа $nA/(nA\cap\langle a\rangle)$ бесконечна, при этом $nG/(nG\cap H)$ вкладывается в $F/(F\cap H)$.

Отметим следующие простые свойства, на которые будем ссылаться.

- **1.** Если H вполне инертная подгруппа группы G, то для любых $\varphi_1, ..., \varphi_n \in E(G)$ подгруппа $H + \varphi_1(H) + \cdots + \varphi_n(H)$ соизмерима c H.
- **2.** Если подгруппа H соизмерима c подгруппой K, то H соизмерима c $H \cap K$ и c H + K, если κ тому же $H \subseteq F$, то H соизмерима c $K \cap F$.
- **3.** Если подгруппа H соизмерима c подгруппами H_i , i=1,...,n, то H соизмерима c $H_1 + ... + H_n$ u c $H_1 \cap ... \cap H_n$.

Фактор-группа $(H+H_1+...+H_n)/H=(H+H_1)/H+...+(H+H_n)/H$ конечна как сумма конечного числа конечных групп $(H+H_i)/H$; в частности, конечна и фактор-группа $(H+H_1)...\cap H_n/H$. А фактор-группа

$$(H + H_1 + ... + H_n)/(H_1 + ... + H_n) \cong H/(H \cap (H_1 + ... + H_n))$$

конечна как гомоморфный образ конечной группы $H/(H \cap H_1)$. Осталось установить конечность фактор-группы $H/(H \cap (H_1 \cap ... \cap H_n))$ и достаточно проверить это для n=2. По условию фактор-группы $H/(H \cap H_1)$ и $H/(H \cap H_2)$ конечны. Конечна и фактор-группа $(H \cap H_2)/(H \cap H_1 \cap H_2)$. В силу изоморфизма

$$H/(H \cap H_2) \cong (H/(H \cap H_1 \cap H_2))/((H \cap H_2)/(H \cap H_1 \cap H_2))$$

если $H/(H \cap H_1 \cap H_2)$ была бы бесконечной, то бесконечной была бы и $H/(H \cap H_2)$.

4. Если подгруппа H соизмерима c подгруппой K, то для всякого гомоморфизма f подгруппа fH соизмерима c fK, если κ тому же F соизмерима c U, то H+F соизмерима c K+U, а $H\cap F$ соизмерима c $K\cap U$.

Если H имеет конечный индекс в H+K, то fH также имеет конечный индекс в f(H+K)=fH+fK. Откуда следует, что подгруппа fH соизмерима с fK. Далее по условию фактор-группы $K/(H\cap K)$ и $U/(F\cap U)$ конечны. Поэтому конечны фактор-группы

$$(K \cap U)/(H \cap K \cap U)$$
 и $(H \cap K \cap U)/(H \cap K \cap F \cap U)$.

Имеем

$$(K \cap U)/(H \cap K \cap U) \cong ((K \cap U)/(F \cap H \cap K \cap U))/((H \cap K \cap U)/(F \cap H \cap K \cap U)).$$

Поэтому если бы фактор-группа $(K\cap U)/(F\cap H\cap K\cap U)$ была бы бесконечной, то была бы бесконечной и фактор-группа $(K\cap U)/(H\cap K\cap U)$. Конечность фактор-группы $(H\cap F)/(F\cap H\cap K\cap U)$ доказывается аналогично. Несложно проверить и со-измеримость H+F с K+U.

5. Если H — вполне инертная подгруппа группы $G = A \oplus B$, то подгруппа $H \cap A$ вполне инертна в A, подгруппа $(H \cap A) \oplus (H \cap B)$ соизмерима c H, а если $\varphi \in \operatorname{Hom}(B,A)$, то подгруппа $H \cap A + \varphi(H \cap B)$ соизмерима c $H \cap A$.

Первое утверждение доказано в [3, лемма 3.2]. Если теперь π : $G \rightarrow A$ и θ : $G \rightarrow B$ — проекции, то $H \subseteq (\pi H) \oplus (\theta H)$, поэтому по свойству 1 подгруппа $(\pi H) \oplus (\theta H)$ соизмерима с H. Далее $H + \pi H$ и $H + \theta H$ соизмеримы с H, а так как

$$(H + \pi H)/H \cong \pi H/(H \cap \pi H)$$
 и $(H + \theta H)/H \cong \theta H/(H \cap \theta H)$,

где $H \cap \pi H = H \cap A$ и $H \cap \theta H = H \cap B$, то $(H \cap A) \oplus (H \cap B)$ соизмерима с $(\pi H) \oplus (\theta H)$ и, значит, с H, a πH соизмерима с $H \cap A$. Подгруппа $(H \cap A) \oplus (H \cap B)$ ввиду вполне инертности соизмерима с $(H \cap A + \phi(H \cap B)) \oplus (H \cap B) = (H \cap A) \oplus (H \cap B) + \pi \phi \theta ((H \cap A) \oplus (H \cap B))$, поэтому $H \cap A = \pi ((H \cap A) \oplus (H \cap B))$ соизмерима с $H \cap A + \phi(H \cap B) = \pi ((H \cap A + \phi(H \cap B)) \oplus (H \cap B))$.

6. Если H – вполне инертная подгруппа группы без кручения G, то $\varphi H \subseteq H_*$ для всякого $\varphi \in E(G)$, где H_* – чистая оболочка подгруппы H в G. B частности, подгруппа H_* вполне инвариантна в G [1, лемма 2.1].

Это свойство вытекает из того, что H_*/H совпадает с периодической частью фактор-группы G/H. В частности, в неприводимой группе без кручения G ненулевая вполне инертная подгруппа будет существенной в G. Неприводимыми, например, являются однородные вполне разложимые группы без кручения.

Напомним, что если H – подгруппа группы G, то $E(G)H = \sum_{\phi \in E(G)} \phi H$ является

наименьшей вполне инвариантной подгруппой, содержащей H; а $\sum_{n=0}^{\infty} \varphi^n H$ — наи-

меньшая ф-инвариантная подгруппа, содержащая Н.

7. Вполне инертная подгруппа H группы G соизмерима c некоторой вполне инвариантной подгруппой тогда u только тогда, когда H содержит подгруппу конечного индекса K, имеющую конечный индекс e E(G)K.

Достаточность следует из транзитивного свойства соизмеримости. Необходимость. Пусть H соизмерима с вполне инвариантной подгруппой F. Тогда $K = H \cap F$ имеет конечный индекс в F, а так как $E(G)K \subseteq F$, то K имеет конечный индекс в E(G)K.

8. Если вполне инертная подгруппа H группы G содержит ненулевую делимую подгруппу без кручения, то H содержит делимую часть D = D(G) группы G; а если H содержит подгруппу, изоморфную $\mathbb{Z}_{p^{\infty}}$, то H содержит p-компоненту группы D.

Делимая часть D(H) группы H выделяется прямым слагаемым в G. Всякая делимая группа ранга 1 является гомоморфным образом группы \mathbb{Q} . Поэтому если D(H) группа непериодическая, то она содержит прямое слагаемое, изоморфное \mathbb{Q} . Получаем, что для каждой делимой подгруппы D' ранга 1 группы D существует такой эндоморфизм ϕ группы G, что $H\cap \phi H$ является подгруппой конечного индекса в D'. Делимые группы не имеют собственных подгрупп конечного индекса, поэтому $D \subseteq H$. В случае подгруппы \mathbb{Z}_{p^∞} рассуждения аналогичны.

Через G_p обозначим p-компоненту группы G.

9. Если $G = D \oplus R$, где $D = F \oplus (\oplus_p D_p)$ — делимая часть группы G, F — делимая часть без кручения, $\bigoplus_p D_p$ —периодическая часть группы D и H — такая вполне инертная подгруппа группы G, что подгруппа $H \cap R$ не является периодической, то подгруппа $H \cap F$ существенна в F, причем $D \subseteq H$, если ранг без кручения подгруппы $H \cap R$ бесконечен. Если же подгруппа $H \cap R_p$ не является ограниченной, то $D_p \subseteq H$.

Если подгруппа $H\cap R$ не является периодической, то она содержит бесконечную циклическую подгруппу. Поскольку делимые группы инъективны, то отсюда следует, что $H\cap D'\neq 0$ для всякой делимой подгруппы без кручения D' ранга 1, в частности $H\cap F$ существенна в F. Если же ранг без кручения подгруппы $H\cap R$ бесконечен, то она содержит свободную группу K бесконечного ранга, всякая счетная группа является гомоморфным образом группы K; откуда следует, что H содержит каждую подгруппу ранга 1 группы $H\cap R_p$ неограниченная, то существует эпиморфизм $H\cap R_p \to \mathbb{Z}_{p^\infty}$, откуда следует, что $D_p \subseteq H$.

Очевидно, что если A – вполне инвариантное прямое слагаемое группы G, то всякая вполне инертная подгруппа группы A будет вполне инертной подгруппой группы G. Справедливость следующего свойства также очевидна.

- **10.** 1) Пусть $G = A \oplus B$. Вполне инертная подгруппа H группы A является вполне инертной подгруппой группы G тогда и только тогда, когда fH конечная группа для каждого $f \in \text{Hom}(A,B)$. B частности, если A вполне инертное прямое слагаемое в G, то Hom(A,B)A периодическая подгруппа в B.
- 2) Если B группа без кручения, а H существенная вполне инертная подгруппа группы A, то H будет вполне инертной подгруппой группы $G = A \oplus B$ тогда и только тогда, когда A вполне инвариантное прямое слагаемое в G.

Напомним следующие понятия. Если $\chi_1=(k_1,k_2,\dots)$ и $\chi_2=(l_1,l_2,\dots)$ – характеристики, то их *произведением* называется характеристика $\chi_1\chi_2=(k_1+l_1,k_2+l_2,\dots)$, где ∞ плюс нечто есть ∞ . *Частное* $\chi_1:\chi_2$ двух характеристик $\chi_1\geq\chi_2$ определяется как наибольшая характеристика χ , для которой $\chi\chi_2\leq\chi_1$. Исходя из этих понятий, определяют произведение и частное типов.

Предложение 1 [9, предложение 85.4]. Пусть A и C – группы без кручения ранга 1. Если неравенство $t(A) \le t(C)$ не имеет места, то t(A) = 0. Если же $t(A) \le t(C)$, то $t(A) \le t(C)$ является группой без кручения ранга 1 и имеет тип t(C) : t(A).

Теорема 2. Пусть $G = G_1 \oplus \ldots \oplus G_n$, где $r(G_i) = 1$, — вполне разложимая группа без кручения конечного ранга. Каждая вполне инертная подгруппа группы G соизмерима c некоторой вполне инвариантной подгруппой тогда и только тогда, когда $pG_i \neq G_i$ для всякого $i = 1, \ldots, n$ и для всякого простого числа p, причем при всех $i, j = 1, \ldots, n$ типы $t(G_i)$, $t(G_i)$ либо равны, либо несравнимы.

Доказательство. Необходимость. Пусть вполне инертная подгруппа $H = \langle g_1 \rangle \oplus \ldots \oplus \langle g_n \rangle$, где $0 \neq g_i \in G_i$, соизмерима с вполне инвариантной подгруппой F. Из соизмеримости H и F следует r(F) = r(H) = n. Отсюда можно вывести, что для всякого i найдётся ненулевой элемент $f_i \in F \cap G_i$. Пусть $pG_i = G_i$. Тогда вполне инвариантная подгруппа $E(G_i)\langle f_i \rangle$ группы G_i тоже p-делима, причём она содержится в группе E(G)F = F. По свойству 4 подгруппа $\pi_i F$ соизмерима с $\pi_i H$. Но так как $\pi_i F$ содержит ненулевую p-делимую группу, то $(\pi_i F + \pi_i H)/\pi_i H$ есть бесконечная группа — противоречие. Пусть $t(G_i) < t(G_j)$. Тогда $Hom(G_i, G_j)\langle f_i \rangle$ — это подгруппа типа $t(G_j) : t(G_i)$, содержащаяся и в G_j и в F. По свойству 4 подгруппа $\pi_j F$ соизмерима с $\pi_j H$. Но так как $\pi_j F$ содержит подгруппу типа $t(G_j) : t(G_i)$, строго большего, чем тип группы $\langle g_j \rangle$, то $\langle \pi_j F + \pi_j H \rangle / \pi_j H$ есть бесконечная группа — противоречие.

Достаточность. Пусть H — вполне инертная подгруппа группы G. Согласно свойству 5, достаточно показать, что подгруппа $(H\cap G_1)\oplus\ldots\oplus (H\cap G_n)$ соизмерима с некоторой вполне инвариантной подгруппой. Поскольку $pG_i\neq G_i$ для всякого простого числа p и для всех i=1,...,n, то группа $\mathrm{Hom}(G_i,G_j)$ либо изоморфна группе целых чисел \mathbb{Z} (если тип группы G_i равен типу группы G_j), либо $\mathrm{Hom}(G_i,G_j)=0$ (если тип группы G_i не сравним с типом группы G_j). Поэтому для всякой подгруппы $X\subseteq G_i$ имеет место равенство $\mathrm{Hom}(G_i,G_j)X=fX$, где f — гомоморфизм, порождающий группу $\mathrm{Hom}(G_i,G_j)$ (все другие гомоморфизмы этой группы являются целыми кратными гомоморфизма f). А поскольку $\mathrm{Hom}(G,G_i)\cong\mathrm{Hom}(G_1,G_i)\oplus\ldots\oplus\mathrm{Hom}(G_n,G_i)$, то отсюда следует, что если $\underline{H}_i=\mathrm{Hom}(G,G_i)((H\cap G_1)\oplus\ldots\oplus(H\cap G_n))$, то $H\cap G_i\subseteq\underline{H}_i$ и $H\cap G_i$ соизмерима с \underline{H}_i . Значит, $\underline{H}=\underline{H}_1\oplus\ldots\oplus\underline{H}_n$ соизмерима с $(H\cap G_1)\oplus\ldots\oplus(H\cap G_n)$. Ясно, что \underline{H}_i — вполне инвариантная подгруппа группы G_i и поскольку $\mathrm{Hom}(G_i,G_j)\underline{H}_i\subseteq\underline{H}_j$, то подгруппа \underline{H} вполне инвариантна в G.

- **Следствие 3.** 1) Если G однородная вполне разложимая группа конечного ранга, то всякая ее вполне инертная подгруппа соизмерима c некоторой вполне инвариантной подгруппой тогда и только тогда, когда $pG \neq G$ для всякого простого числа p.
- 2) В однородной вполне разложимой группе G конечного ранга вполне инертная подгруппа H соизмерима c некоторой вполне инвариантной подгруппой тогда u только тогда, когда pH = H для всякого простого числа p со свойством pG = G.

Представляет интерес изучение вполне инертных подгрупп групп, исследуемых в [10–15]. Отметим, что в ряде случаев автор получил ответ, когда каждая вполне инертная подгруппа вполне разложимой группы без кручения бесконечного ранга соизмерима с некоторой вполне инвариантной подгруппой.

В заключение отметим, что в [16] изучались *сильно инвариантные* подгруппы, т.е. такие подгруппы N группы G, что $fN \subseteq N$ для всякого $f \in \operatorname{Hom}(N,G)$. А *сильно инертной* (S. Breaz, G. Călugăreanu) называется подгруппа N группы G такая, что $fN \cap N$ имеет конечный индекс в fN для каждого $f \in \operatorname{Hom}(N,G)$. В каждой группе G ее подгруппа $G[n] = \{g \in G \mid ng = 0\}$ сильно инертна, семейство сильно инертных подгрупп замкнуто относительно конечных сумм, но не пересечений. Если всякий гомоморфизм из $\operatorname{Hom}(N,G)$ продолжается до эндоморфизма группы G (например, если N – прямое слагаемое в G), то вполне инертная подгруппа N будет сильно инертной. Вышеупомянутыми двумя авторами получен также ряд других интересных свойств сильно инертных подгрупп.

ЛИТЕРАТУРА

- 1. Dikranjan D., Giordano Bruno A., Salce L., Virili S. Fully inert subgroups of divisible Abelian groups // J. Group Theory. 2013. V. 16. No 6. P. 915–939.
- 2. Dikranjan D., Salce L., Zanardo P. Fully inert subgroups of free Abelian groups // Period. Math. Hungar. 2014. V. 69. No 1. P. 69–78. DOI 10.1007/s10998-014-0041-4.
- 3. *Goldsmith B.*, *Salce L.*, *Zanardo P.* Fully inert subgroups of Abelian *p*-groups // J. of Algebra. 2014. V. 419. P. 332–349.
- Беляев В.В. Инертные подгруппы в бесконечных простых группах // Сиб. матем. журн. 1993. Т. 34. № 4. С. 17–23.
- 5. *Беляев В.В.* Локально конечные группы с конечной неотделимой подгруппой // Сиб. матем. журн. 1993. Т. 34. № 2. С. 23–41.
- Belyaev V.V., Kuzucuoğlu M., Seçkin E. Totally inert groups // Rend. Sem. Mat. Univ. Padova. 1999. V. 102. P. 151–156.
- 7. *Dixon M.R*, *Evans M.J.*, *Tortora A*. On totally inert simple groups // Cent. Eur. J. Math. 2010. V. 8. No 1. P. 22–25. DOI 10.2478/s11533-009-0067-7.
- 8. *Dardano U.*, *Rinauro S*. Inertial automorphisms of an abelian group // Rend. Sem. Mat. Univ. Padova. 2012. V. 127. P. 213–233. DOI 10.4171/RSMUP/127-11.
- 9. *Фукс Л.* Бесконечные абелевы группы. М.: Мир, 1977. Т. 2. 417 с.
- Чехлов А.Р. Об одном классе эндотранзитивных групп // Матем. заметки. 2001. Т. 69.
 № 6. С. 944–949.
- 11. *Чехлов А.Р.* О проективном коммутанте абелевых групп // Сиб. матем. журн. 2012. Т. 53. № 2. С. 451–464.
- Чехлов А.Р. Об абелевых группах с нильпотентными коммутаторами эндоморфизмов // Изв. вузов. Математика. 2012. № 10. С. 60–73.
- 13. *Чехлов А.Р.* О проективно разрешимых абелевых группах // Сиб. матем. журн. 2012. Т. 53. № 5. С. 1157–1165.
- 14. Чехлов А.Р. Об абелевых группах, близких к Е-разрешимым // Фундамент. и прикл. матем. 2011/2012. Т. 17. № 8. С. 183–219.

- 15. Chekhlov A.R., Danchev P.V. On Abelian groups having all proper fully invariant subgroups isomorphic // Comm. Algebra. 2015. V. 43. No. 12. P. 5059–5073. DOI 10.1080/00927872. 2015.1008011.
- Călugăreanu G. Strongly invariant subgroups // Glasg. Math. J. 2015. V. 57. No. 2. P. 431–443. DOI 10.1017/S0017089514000391.

Статья поступила 21.03.2016 г.

Chekhlov A.R. (2016) FULLY INERT SUBGROUPS OF COMPLETELY DECOMPOSABLE FINITE RANK GROUPS AND THEIR COMMENSURABILITY. *Tomsk State University Journal of Mathematics and Mechanics*. 3(41), pp. 42–50

DOI 10.17223/19988621/41/4

A subgroup H of an Abelian group G is said to be fully inert in G if the subgroup $H \cap \varphi H$ has a finite index in φH for any endomorphism φ of the group G. Subgroups H and K of the group G are said to be commensurable if the subgroup $K \cap H$ has a finite index in H and in K. Some properties of fully inert and commensurable groups in the context of direct decompositions of the group and operations on subgroups are proved. For example, if a subgroup H is commensurable with a subgroup K, then H is commensurable with $H \cap K$ and with H + K; if a subgroup H is commensurable with a subgroup H is commensurable with $H \cap K$ and with $H \cap K$ for any homomorphism H. The main result of the paper is that every fully inert subgroup of a completely decomposable finite rank torsion-free group H is commensurable with a fully invariant subgroup if and only if types of rank 1 direct summands of the group H are either equal or incomparable, and all rank 1 direct summands of the group H are not divisible by any prime number H.

Keywords: factor group, fully invariant subgroup, commensurable subgroups, divisible hull, rank of the group.

CHEKHLOV Andrey Rostislavovich (Doctor of Physics and Mathematics, Tomsk State University, Tomsk, Russian Federation)

E-mail: cheklov@math.tsu.ru

REFERENCES

- 1. Dikranjan D., Giordano Bruno A., Salce L., Virili S. (2013) Fully inert subgroups of divisible Abelian groups *J. Group Theory*. 16(6). pp. 915–939.
- Dikranjan D., Salce L., Zanardo P. (2014) Fully inert subgroups of free Abelian groups. *Period. Math. Hungar.* 69(1), pp. 69–78. DOI 10.1007/s10998-014-0041-4.
- 3. Goldsmith B., Salce L., Zanardo P. (2014) Fully inert subgroups of Abelian *p*-groups. *J. of Algebra*. 419. pp. 332–349.
- Belyaev V.V. (1993) Inert subgroups in infinite simple groups. Sib. Math. J. 34(4). pp. 606–611. DOI 10.1007/BF00975160.
- 5. Belyaev V.V. (1993) Locally finite groups containing a finite inseparable subgroup. *Sib. Math. J.* 34(2), pp. 218–232.
- 6. Belyaev V.V., Kuzucuoğlu M., Seçkin E. (1999) Totally inert groups. *Rend. Sem. Mat. Univ. Padova.* 102. pp. 151–156.
- 7. Dixon M.R, Evans M.J., Tortora A. (2010) On totally inert simple groups. *Cent. Eur. J. Math.* 8(1). pp. 22–25. DOI 10.2478/s11533-009-0067-7.
- 8. Dardano U., Rinauro S. (2012) Inertial automorphisms of an abelian group. *Rend. Sem. Mat. Univ. Padova.* 127. pp. 213–233. DOI 10.4171/RSMUP/127-11.
- 9. Fuchs L. (1973) Infinite Abelian groups. Vol. II. New York and London: Academic Press.
- Chekhlov A.R. (2001) On a class of endotransitive groups. *Math. Notes.* 69(5-6). pp. 863–867. DOI 10.4213/mzm709.
- 11. Chekhlov A.R. (2012) On the projective commutant of Abelian groups. *Sib. Math. J.* 53(2). pp. 361–370. DOI 10.1134/S0037446612020188.

- 12. Chekhlov A.R. (2012) Abelian groups with nilpotent commutators of endomorphisms. *Russian Math.* 56(10). pp. 50–61. DOI 10.3103/S1066369X12100052.
- 13. Chekhlov A.R. (2012) On projectively soluble abelian groups. *Sib. Math. J.* 53(5). pp. 927–933. DOI 10.1134/S0037446612050175.
- Chekhlov A.R. (2014) On Abelian Groups Close to E-Solvable Groups. J. Math. Sci. 197(5). pp. 708–733. DOI 10.1007/s10958-014-1755-9.
- Chekhlov A.R., Danchev P.V. (2015) On Abelian Groups Having All Proper Fully Invariant Subgroups Isomorphic. *Comm. Algebra.* 43(12). pp. 5059–5073. DOI 10.1080/00927872. 2015.1008011.
- Călugăreanu G. (2015) Strongly invariant subgroups. Glasg. Math. J. 57(2). pp. 431–443.
 DOI 10.1017/S0017089514000391.