из V_{32} , то вероятность линейной независимости системы равна $\prod_{i=0}^{7} (1-2^{i-32})$, то есть превышает $1-2^{24}$.

ЛИТЕРАТУРА

- 1. Φ омичев В. М. Методы дискретной математики в криптологии. М.: Диалог-МИФИ, 2010. $424\,\mathrm{c}$.
- 2. *Романько Д. А.*, *Фомичев В. М.* О способах построения криптографических генераторов с заданным показателем бесповторности выходных последовательностей // Прикладная дискретная математика. Приложение. 2016. № 9. С. 65–67.

УДК 004.056.55

DOI 10.17223/2226308X/9/29

КРИПТОАНАЛИЗ КРИПТОСИСТЕМЫ МАК-ЭЛИСА, ПОСТРОЕННОЙ НА (k-1)-ПОДКОДАХ КОДА РИДА — МАЛЛЕРА

И.В. Чижов, М.А. Бородин

Описаны два вида криптосистем Мак-Элиса, построенных на подкодах кода Рида — Маллера. Изучен вопрос эквивалентных ключей для этих криптосистем. Получен результат о сводимости одной криптосистемы к другой. Приведены алгоритмы, которые позволяют применить атаку Чижова — Бородина к рассматриваемым криптосистемам для некоторых параметров кодов Рида — Маллера.

Ключевые слова: криптосистема Мак-Элиса, подкоды Рида — Маллера, автоморфизмы кодов Рида — Маллера, произведение Шура, квадрат кода.

Криптосистема Мак-Элиса предложена в 1978 г. Р. Дж. Мак-Элисом. Её стойкость основана на предположении сложности декодирования кода общего положения. Оригинальная криптосистема Мак-Элиса строится на двоичных кодах Гоппы. Для повышения эксплуатационных характеристик В. М. Сидельников предложил использовать коды Рида — Маллера [1]. Однако в 2007 г. Л. Миндера и А. Шокроллахи предложили достаточно эффективную атаку на такую криптосистему [2]. Кроме того, в 2013 г. Бородин и Чижов ещё больше понизили стойкость этой криптосистемы, а также построчили полиномиальную атаку в случае использования кода Рида — Маллера RM(r,m) с такими параметрами, что (r,m-1)=1 [3].

Бывает, что атаки на кодовые криптосистемы, работающие в случае использования полного кода, оказываются бесполезными в случае использования некоторых подкодов кода. Так была предложена криптосистема Бергера — Луадро, построенная на подкодах кода Рида — Соломона. В работе рассматриваются два аналога криптосистемы Бергера — Луадро, построенных на (k-1)-подкодах кода Рида — Маллера RM(r,m).

Пусть V_n — множество всех двоичных векторов длины n. Известно, что с каждой булевой функцией $f(x_1,x_2,\ldots,x_m):V_m\to V_1$ можно связать вектор значений $\Omega_f=(f(0,0,\ldots,0),f(0,0,\ldots,1),\ldots,f(1,1,\ldots,1))$. В дальнейшем не будем делать различий в обозначениях между булевой функцией и её вектором значений. Каждая булева функция может быть представлена полиномом Жегалкина: $f(x_1,x_2,\ldots,x_m)=$ $=\bigoplus_{u=(u_1,u_2,\ldots,u_m)\in V_m}g_f(u)x^u$, здесь $x^u=x_1^{u_1}x_2^{u_2}\ldots x_m^{u_m}$ и $x_i^{u_i}=x_i$, если $u_i=1$, и $x_i^{u_i}=1$, если $u_i=0$, а $g_f(u)$ — некоторая булева функция.

Определение 1. Степенью булевой функции называется наименьшее целое положительное число d, такое, что $g_f(u) = 0$ для всех u веса больше d, т. е. wt(u) > d.

Определение 2. Кодом Рида — Маллера RM(r,m) называется множество всех векторов значений булевых функций от m переменных, степень которых не превосходит r.

Базисом кода являются все мономы степени r от m переменных:

$$1, x_1, \ldots, x_{m-1}, x_1 x_2, \ldots, x_{m-1} x_m, \ldots, x_1 x_2 \cdots x_r, \ldots, x_{m-r-1} \cdots x_m. \tag{1}$$

Для двоичного набора $\alpha = (\alpha_{m-1}, \dots, \alpha_0)$ символом $|\alpha|$ обозначим представление двоичной строки в виде десятичного числа α , т.е. $|\alpha| = \alpha_0 + 2\alpha_1 + \dots + 2^{m-1}\alpha_{m-1}$. Введём отношение порядка для векторов $\alpha, \beta \in V_m$. Будем считать, что $\alpha < \beta$, если либо $\operatorname{wt}(\alpha) < \operatorname{wt}(\beta)$, либо $\operatorname{wt}(\alpha) = \operatorname{wt}(\beta)$ и $|\alpha| < |\beta|$. Тогда можно ввести отношение порядка на множестве мономов: $x^{\alpha} < x^{\beta}$, если $\alpha < \beta$.

Определение 3. Стандартной формой порождающей матрицы кода RM(r,m) будем называть матрицу, составленную из всех векторов значений мономов (1), стоящих в порядке возрастания.

Обозначим также символом $\mathbf{A}(r,m)$ множество всех таких наборов $\alpha=(\alpha_{m-1},\ldots,\alpha_0)$, что моном x^{α} входит в стандартную форму порождающей матрицы кода RM(r,m).

Устройство криптосистемы первого типа McElRM1(r,m). Для генерации ключей строится стандартная форма порождающей матрицы R кода RM(r,m). Далее выбирается случайная двоичная невырожденная $(k \times n)$ -матрица $H = (h_{ij})$ и случайная подстановка $\sigma \in S_n$, представленная в виде перестановочной $(n \times n)$ -матрицы P_{σ} . Затем вычисляется матрица $G' = H \cdot R \cdot P_{\sigma} = H \cdot R^{\sigma}$ и из неё удаляется первая строка, получается $((k-1) \times n)$ -матрица G. Секретным ключом криптосистемы является набор $(H, P_{\sigma}) = (H, \sigma)$, а открытым ключом — матрица G и (r, m) — параметры кода Рида — Маллера, однако, ради удобства, параметры в открытый ключ не включены.

Устройство криптосистемы второго типа McElRM2(r,m). Для генерации ключей строится стандартная форма порождающей матрицы R кода RM(r,m). Далее выбирается случайный номер $i, 1 \le i \le k$. Из матрицы R удаляется строка с номером i. Получившуюся в результате матрицу обозначим через R[i]. Выбирается случайная дво-ичная невырожденная $((k-1)\times n)$ -матрица $H=(h_{ij})$ и случайная перестановочная $(n\times n)$ -матрица $P_{\sigma}=(p_{ij})$. Вычисляется матрица $G=H\cdot R[i]\cdot P_{\sigma}=H\cdot (R[i])^{\sigma}$. Секретным ключом криптосистемы является набор $(H,P_{\sigma},i)=(H,\sigma,i)$, а открытым ключом — матрица G.

Определение 4. Два секретных ключа (H_1, σ_1) и (H_2, σ_2) называются *эквива*лентными, если соответствующие им открытые ключи G_1 и G_2 равны.

В работе решается задача восстановления секретного ключа криптосистемы или эквивалентного ему по открытому ключу.

Пусть (H, σ) — некоторый секретный ключ криптосистемы McElRM1(r, m); G— соответствующий ему открытый ключ; $\sigma_{A,b}$ — некоторый автоморфизм кода Рида — Маллера. Тогда для порождающей матрицы R кода Рида — Маллера существует единственная матрица $H_{A,b}$ (невырожденная), что $H_{A,b}R = R\sigma_{A,b}$.

Теорема 1. Пусть $[(H,\sigma)]$ — класс эквивалентности секретного ключа (H,σ) криптосистемы McElRM1. Тогда $\{(HH_{A,b},\sigma_{A,b}^{-1}\sigma):\sigma_{A,b}\in \operatorname{Aut}(RM(r,m))\}\subseteq [(H,\sigma)]$.

Пусть C — произвольный (k-1)-подкод кода Рида — Маллера RM(r,m). Рассмотрим такой моном $f_{\min}=x^{\alpha_{\min}}$, что для всех $\alpha'<\alpha_{\min}$ моном $x^{\alpha'}\in C$, а $f_{\min}\not\in C$. Такой

моном существует и единственный. Пусть $\alpha = \alpha_{\min}$. Для всех $\alpha' > \alpha$ либо моном $x^{\alpha'} \in C$, либо $x^{\alpha'} \oplus x^{\alpha} \in C$, т. е. $x^{\alpha'} \oplus a(\alpha')x^{\alpha} \in C$ для некоторого $a(\alpha') \in \{0,1\}$. Введём вектор $a = (a(\alpha') : \alpha' \in \mathbf{A}(r,m))$. Тогда код C однозначно определяется векторами α и a. Будем в дальнейшем такой код обозначать символом $C_{\alpha,a}(r,m)$, причём $a(\alpha') = 0$ для всех $\alpha' < \alpha$ и $a(\alpha) = 1$. Отметим, что открытый ключ G криптосистемы первого типа — это порождающая матрица кода $C_{\alpha,a}^{\sigma}$ для некоторого α и a.

Для построения атаки на криптосистему первого типа используем идеи работы [3].

Определение 5. Пусть C и B — два линейных [n,k]-кода. Произведением $C \circ B$ назовём код, состоящий из всех возможных произведений кодовых слов $c \cdot b$, $c \in C$, $b \in B$. Здесь $c \cdot b = (c_1 \cdot b_1, c_2 \cdot b_2, \dots, c_n \cdot b_n)$, если $c = (c_1, \dots, c_n)$ и $b = (b_1, \dots, b_n)$.

Доказаны следующие теоремы.

Теорема 2. Пусть $r_1 + r_2 \leqslant m$. Пусть также $\alpha^1 \in \mathbf{A}(r_1, m)$, $\alpha^2 \in \mathbf{A}(r_2, m)$, причём выполнено одно из двух условий:

- 1) $\alpha^1 \neq \alpha^2, \, \alpha^1, \alpha^2 > 0;$
- 2) $\alpha^1 = \alpha^2 = \alpha$ и wt(α) $\geqslant 2$.

Тогда для любых a^1 и a^2 выполняется равенство

$$C_{\alpha^1,a^1}(r_1,m) \circ C_{\alpha^2,a^2}(r_2,m) = RM(r_1 + r_2,m).$$

Теорема 3. Пусть 2r < m. Тогда для любых α , таких, что $\operatorname{wt}(\alpha) = 1$, либо $C_{\alpha,a}(r,m) \circ C_{\alpha,a}(r,m) = RM(2r,m)$, либо существует такой автоморфизм $\sigma_{A,b}$ кода Рида — Маллера RM(r,m), что $C_{\alpha,a}(r,m) \circ C_{\alpha,a}(r,m) = C_{1,0}^{\sigma_{A,b}}(2r,m)$.

Общая схема атаки на криптосистему первого типа McElRM1(r,m):

Ш а г 1. По матрице G построить порождающую матрицу кода $RM^{\sigma}(r,m)$.

Ш а г 2. Применить атаку Чижова — Бородина к этой матрице.

Для реализации первого шага предложен полиномиальный по сложности алгоритм, корректность работы которого доказывается при помощи теорем 2 и 3. Входным значением для алгоритма является открытый ключ криптосистемы McElRM1(r,m) — матрица G, которая соответствует подкоду $C^{\sigma}_{\alpha,a}$. Выходным значением является порождающая матрица кода $RM^{\sigma}(r,m)$. Алгоритм применим для следующих параметров: $2r \leqslant m-1$ при любом $\mathrm{wt}(\alpha)$ и для $2r \geqslant m$ при $\mathrm{wt}(\alpha) \leqslant m-r-1$.

ЛИТЕРАТУРА

- 1. Cudeльников В. М. Открытое шифрование на основе двоичных кодов Рида Маллера // Дискретная математика. 1994. Т. 6. № 2. С. 3–20.
- Minder L. and Shokrollahi A. Cryptanalysis of the Sidelnikov cryptosystem // LNCS. 2007. V. 4515. P. 347–360.
- 3. *Бородин М. А.*, *Чижов И. В.* Эффективная атака на криптосистему Мак-Элиса, построенную на основе кодов Рида Маллера // Дискретная математика. 2014. Т. 26. № 1. С. 10–20.