№ 9 ПРИЛОЖЕНИЕ Сентябрь 2016

Секция 5

МАТЕМАТИЧЕСКИЕ ОСНОВЫ НАДЁЖНОСТИ ВЫЧИСЛИТЕЛЬНЫХ И УПРАВЛЯЮЩИХ СИСТЕМ

УДК 519.718

DOI 10.17223/2226308X/9/37

О НАДЁЖНОСТИ СХЕМ В БАЗИСЕ РОССЕРА — ТУРКЕТТА (В P_k) 1

М. А. Алехина, О. Ю. Барсукова

Рассматривается реализация функций k-значной логики схемами из ненадёжных функциональных элементов в базисе Россера — Туркетта. Предполагается, что все элементы схемы независимо друг от друга подвержены инверсным неисправностям на выходах. Найдены верхняя и нижняя оценки ненадёжности схем, а также класс функций, для которых нижние оценки справедливы.

Ключевые слова: функции *k*-значной логики, ненадёжные функциональные элементы, надёжность и ненадёжность схемы, инверсные неисправности на выходах элементов.

Пусть $k, n \in \mathbb{N}, k \geqslant 3, E_k = \{0, 1, \dots, k-1\}, P_k$ — множество всех функций k-значной логики, т. е. функций $f(x_1, \dots, x_n) : (E_k)^n \to E_k$. Рассмотрим реализацию функций из множества P_k схемами из ненадёжных функциональных элементов в базисе Россера — Туркетта $\{0, 1, \dots, k-1, J_0(x_1), J_1(x_1), \dots, J_{k-1}(x_1), \min\{x_1, x_2\}, \max\{x_1, x_2\}\}.$

Будем считать, что схема из ненадёжных элементов реализует функцию $f(\tilde{x}^n)$ $(\tilde{x}^n = (x_1, \dots, x_n))$, если при поступлении на входы схемы набора \tilde{a}^n при отсутствии неисправностей в схеме на её выходе появляется значение $f(\tilde{a}^n)$.

Пусть схема S реализует функцию $f(\tilde{x}^n)$, \tilde{a}^n —произвольный входной набор схемы S, $f(\tilde{a}^n) = \tau$. Обозначим через $P_i(S, \tilde{a}^n)$ вероятность появления значения $i \in E_k$ на выходе схемы S при входном наборе \tilde{a}^n , а через $P_{f(\tilde{a}^n) \neq \tau}(S, \tilde{a}^n)$ — вероятность появления ошибки на выходе схемы S при входном наборе \tilde{a}^n . Ясно, что $P_{f(\tilde{a}^n) \neq \tau}(S, \tilde{a}^n) = P_{\tau+1}(S, \tilde{a}^n) + P_{\tau+2}(S, \tilde{a}^n) + \ldots + P_{\tau+k-1}(S, \tilde{a}^n)$. В выражениях $\tau+1$, $\tau+2,\ldots$, $\tau+k-1$ сложение осуществляется по mod k. Например, если входной набор \tilde{a}^n схемы S такой, что $f(\tilde{a}^n) = 0$, то вероятность появления ошибки на этом наборе равна k-1

$$P_{f(\tilde{a}^n)\neq 0}(S, \tilde{a}^n) = P_1(S, \tilde{a}^n) + P_2(S, \tilde{a}^n) + \ldots + P_{k-1}(S, \tilde{a}^n) = \sum_{i=1}^{k-1} P_i(S, \tilde{a}^n).$$

Hена $d\ddot{e}$ эжностью схемы S, реализующей функцию $f(\tilde{x}^n)$, будем называть число P(S), равное наибольшей из вероятностей появления ошибки на выходе схемы S. $Had\ddot{e}$ эжность схемы S равна 1-P(S).

Предполагается, что элементы схемы независимо друг от друга с вероятностью ε , $0<\varepsilon<1/(2(k-1))$, подвержены инверсным неисправностям на выходах, т. е. каждый базисный элемент с функцией $\varphi(\tilde{x}^m)$, $m\in\mathbb{N}$, на любом входном наборе \tilde{a}^m , таком, что $\varphi(\tilde{a}^m)=\tau$, с вероятностью ε выдаёт любое из значений α , $\alpha\neq\tau\pmod{k}$. Поэтому вероятность ошибки на выходе любого базисного элемента равна $(k-1)\varepsilon$. Очевидно, что ненадёжность любого базисного элемента также равна $(k-1)\varepsilon$, а надёжность $(k-1)\varepsilon$.

¹Работа поддержана грантом РФФИ, проект № 14-01-00273.

Пусть $P_{\varepsilon}(f) = \inf P(S)$, где инфимум берется по всем схемам S из ненадёжных элементов, реализующим функцию $f(\tilde{x}^n)$. Схему A, реализующую f, назовем асимптотически оптимальной по надёжности, если $P(A) \sim P_{\varepsilon}(f)$ при $\varepsilon \to 0$.

Справедливы теоремы об оценках ненадёжности схем и классе функций, для схем которых нижняя оценка ненадёжности верна.

Теорема 1. Любую функцию $f \in P_k$ можно реализовать такой схемой S, что $P(S) \leq 3(k-1)\varepsilon + 90k^2\varepsilon^2$ при всех $\varepsilon \in (0, 1/(288k^4)].$

Обозначим через K(n) множество таких k-значных функций, зависящих от переменных $x_1, \ldots, x_n \ (n \geqslant 3)$, что каждая из этих функций принимает все k значений и не представима ни в виде $x_k \vee h(\tilde{x}^n)$, ни в виде $x_k \& h(\tilde{x}^n)$ $(k \in \{1, 2, ..., n\}, h(\tilde{x}^n)$ – произвольная функция k-значной логики). Пусть $K = \bigcup_{n=3}^{\infty} K(n)$.

Теорема 2.
$$|K(n)| \ge k^{k^n} - 2nk^{(k-1)k^{n-1}} - k(k-1)^{k^n}$$
.

Теорема 3. Пусть функция $f \in K$. Тогда для любой схемы S, реализующей f, при $\varepsilon \in (0, 1/(288k^4)]$ верно неравенство $P(S) \geqslant 3(k-1)\varepsilon - (k-1)(3k-1)\varepsilon^2 + k(k-1)^2\varepsilon^3$.

В заключение можно сделать следующие выводы:

- 1) Любую функцию из P_k можно реализовать схемой, функционирующей с ненадёжностью, асимптотически (при $\varepsilon \to 0$) не больше $3(k-1)\varepsilon$ (теорема 1).
- 2) Любую функцию из класса K (содержащего почти все функции из P_k) нельзя реализовать схемой с ненадёжностью, асимптотически (при $\varepsilon \to 0$) меньше $3(k-1)\varepsilon$ (теорема 3).
- 3) Схема, реализующая функцию $f \in K$ и удовлетворяющая условиям теоремы 1, является асимптотически оптимальной по надёжности и функционирует с ненадёжностью, асимптотически равной $3(k-1)\varepsilon$ при $\varepsilon \to 0$.

Таким образом, в базисе Poccepa - Typketta: 1) любую функцию k-значной логики можно реализовать схемой, ненадёжность которой асимптотически (при $\varepsilon \to 0$) не больше $3(k-1)\varepsilon$; 2) для почти любой функции такая схема является асимптотически оптимальной по надёжности и функционирует с ненадёжностью, асимптотически равной $3(k-1)\varepsilon$ при $\varepsilon \to 0$.

В списке литературы приведены работы, в которых получены результаты по надёжности и ненадёжности схем в базисе Россера — Туркетта при k = 3 [1-4] и k = 4 [5-8]. Результаты для произвольного k получены впервые.

ЛИТЕРАТУРА

- 1. Алехина М. А., Барсукова О. Ю. О надежности схем, реализующих функции из P_3 // Известия высших учебных заведений. Поволжский регион. Физ.-мат. науки. 2012. № 1(21). C. 57-65.
- 2. Алехина М. А., Барсукова О. Ю. Оценки ненадежности схем в базисе Россера Туркетта // Известия высших учебных заведений. Поволжский регион. Физ.-мат. науки. 2014. № 1(29). C. 5–19.
- 3. Алехина М. А., Барсукова О. Ю. Ненадёжность схем в базисе Россера Туркетта // Прикладная дискретная математика. Приложение. 2014. № 7. С. 109–110.
- 4. Барсукова О. Ю. Синтез надежных схем, реализующих функции двузначной и трехзначной логик: дис. . . . канд. физ.-мат. наук. Пенза, 2014. 87 с.
- 5. Алехина М. А., Каргин С. П. Асимптотически оптимальные по надежности схемы в базисе $Poccepa - Typketta в P_4 // Известия высших учебных заведений. Поволжский регион.$ Физ.-мат. науки. 2015. № 1. С. 38–54.

- 6. Алехина М. А., Каргин С. П. Об одном методе повышения надежности схем в базисе Россера Туркетта // Труды IX Междунар. конф. «Дискретные модели в теории управляющих систем» (Москва и Подмосковье, 20–22 мая 2015 г.), посвященной 90-летию со дня рождения С. В. Яблонского. М.: МГУ, МАКС Пресс, 2015. С. 17–19.
- 7. Алехина М. А., Каргин С. П. Верхняя оценка ненадежности схем в базисе Россера Туркетта (в P_4) // Сб. статей Междунар. науч.-технич. конф. «Проблемы автоматизации и управления в технических системах 2015», посвященной 70-летию Победы в Великой Отечественной войне (г. Пенза, 19–21 мая 2015 г.) Пенза: Изд-во Пенз. ун-та, 2015. С. 315–317.
- 8. *Алехина М. А.*, *Каргин С. П.* Нижние оценки ненадёжности схем в базисе Россера Туркетта (в P_4) // Прикладная дискретная математика. Приложение. 2015. № 8. С. 104–105.

УДК 519.718

DOI 10.17223/2226308X/9/38

НЕНАДЁЖНОСТЬ СХЕМ ПРИ СЛИПАНИЯХ ВХОДОВ ЭЛЕМЕНТОВ¹

М. А. Алехина, О. А. Логвина

Рассматривается реализация булевых функций схемами из ненадёжных функциональных элементов в некоторых полных конечных базисах. Предполагается, что каждый из элементов схемы независимо от других элементов подвержен дизъюнктивным (конъюнктивным) слипаниям входов. Показано, что в некоторых базисах любую булеву функцию можно реализовать схемой сколь угодно высокой надёжности, а в некоторых — схемой, ненадёжность которой равна нулю.

Ключевые слова: ненадёжные функциональные элементы, надёжность схемы, ненадёжность схемы, слипание входов элементов.

Задача синтеза надёжных схем, реализующих булевы функции, при константных неисправностях одного типа (например, только типа 0 на входах элементов) решена в полных неприводимых базисах из двухвходовых элементов [1], при константных неисправностях двух типов [2-4], при константных неисправностях четырёх типов на входах и выходах [5, 6].

В этой работе рассмотрим реализацию булевых функций схемами из ненадёжных элементов в полном конечном базисе *В* и исследуем модель неисправностей, в которой каждый элемент схемы подвержен дизъюнктивным (конъюнктивным) слипаниям входов, когда на оба входа базисного элемента при наличии неисправности подается дизъюнкция (конъюнкция) входных значений. Различные слипания переменных исследовались, например, в работах [7–10] при построении тестов.

Считаем, что схема из ненадёжных элементов реализует функцию $f(x_1,\ldots,x_n)$, $n\in\mathbb{N}$, если при поступлении на входы схемы набора $\tilde{a}^n=(a_1,\ldots,a_n)$ при отсутствии неисправностей в схеме на её выходе появляется значение $f(\tilde{a}^n)$. Предполагаем, что в неисправные состояния элементы схемы переходят независимо друг от друга с вероятностью $\varepsilon\in(0,1/2)$. Пусть схема S реализует булеву функцию $f(\tilde{x}^n)$. Обозначим через $P_{\overline{f(\tilde{a}^n)}}(S,\tilde{a}^n)$ вероятность появления значения $\overline{f(\tilde{a}^n)}$ на выходе схемы S при входном наборе \tilde{a}^n . Ненадёжность P(S) схемы S равна максимальному из чисел $P_{\overline{f(\tilde{a}^n)}}(S,\tilde{a}^n)$ по всем входным наборам \tilde{a}^n схемы S. Надёжность схемы S равна 1-P(S).

¹Работа поддержана грантом РФФИ, проект № 14-01-00273.