Идентификация в дискретных системах со случайными скачкообразными параметрами при неполной информации | Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2021. № 54. DOI: 10.17223/19988605/54/6

Идентификация в дискретных системах со случайными скачкообразными параметрами при неполной информации

Рассмотрена задача идентификации в дискретной системе со скачкообразными параметрами. Алгоритм предполагает использование оценок, построенных с помощью экстраполятора Калмана с оценками неизвестных входов и оценками неизвестных входов в модели вектора наблюдения. Для иллюстрации предлагаемого подхода приведен пример.

Identification of discrete time systems with random jump parameters and incomplete information.pdf Estimation and identification problems are relevant for different systems. As an example of such systems, one can consider, for example, economic systems [1, 2], energy systems [3, 4], flight systems [5], communication systems [6, 7]. Such problems occupy a special place in the problem of fault detection [8-10]. In [11], the problem of filtering and simultaneous diagnostics of a jump parameter for discrete systems with multiplicative perturbations was considered. In this paper, we consider the problem of simultaneous extrapolation and identification of a state with a jump parameter described by a Markov chain, which is included in the description of a linear stochastic system. The solution was obtained using the separation principle, Kalman extrapolator and the vector of estimates of the unknown input [12-15]. It is proposed to select a filter transmission matrix based on minimizing the sum of quadratic forms of estimation errors. The identification problem is solved in the conditions of incomplete information about the observation (there is an unknown input in the observation channel model). A numerical example of solving the problem of extrapolation and identification of a linear system with Markov jump parameter is given. 1. Problem statement Consider the following linear discrete-time stochastic system with a jump parameter: x(k +1) = Ai(k)x(k) + A(k)U(k) + qyik)(k), x(0) = x0, (1) where x(k) e Rn denotes the state of the system, u (k) e Rm denotes the known input, X0 is a random vector, Ay(k) and A(k) are matrices of corresponding dimensions; у = y(k) is a jumping parameter not available to observations (Markov chain with r states y1,...,yr); qy(k}(k) are random perturbations with characteristics: E{ qJ(k)(k)} = ° E{ qyk)(k) qlk) СО I y©=y(k) k j}=• Here E{ •} denotes the mathematical expectation, T denotes matrix transposition and 5kJ is Kronecker delta. The probability of states of the jump process Pj (k) = P{y(k) = j}, j = 1, r satisfies the equation r _ Pj(k+o=Z Pi(k) Pi, j, Pj(0)=Pj,o, j=1 r, (2) i=1 48 Identification of discrete time systems with random jump parameters and incomplete information where ptd is the probability of transition from the state i to the state j for one step, Pj,0 is the initial probability of the j-th state. An observation vector with incomplete information is: y(k) = SY(k)x(k) + HY(kMk) + VY(k) (kI (3) where y(k) is an unknown input, HY(k) is a matrix, vY(k) (k) is the Gaussian random sequence independent of Яу(к)(!с) xo and Y(k) with characteristics: E{vY(k)(k)} = 0, E{vY(k)(k)vTk)(j)| Y© = Y(k),k 0, satisfying the equations: r _ L, (k) = (A - K (k)S, )T (X P.jLj (k + 1))(A - K (k)S,) +1, L, (T) = H, i = 1, j=1 where I is an unit matrix, H > 0 is some matrix. Let us sum over k = t,T -1 the finite differences of the function W(k, N (k)), taking into account formula (12): T-1 T-1 T-1 XAW(k,N(k)) =X[W(k +1,N(k +1))- W(k,Ni(k))] =Xtr[Ni(k + 1)Li(k +1)k=t k=t k=t -N (k)L (k) - [Qi + K (k)YiKi (k)т + о, (k)]L (k)]. (13) On the other hand, this expression can be represented as follows: T -1 XAW(k, N (k)) =W(t+1, N (t+1)) - W(t, N (t))+... k=t +W (T, N (T)) - W (T -1, N (T -1)) = tr N (T)L (T) - T-1 (14) -trN(t)Lt (t) - trX[Q, + K(k)VK(k)T+Q(k)]Lt (k). k=t Add to the formula (10) the difference of the right-hand sides (13) and (14). Given that this difference is zero, then criterion (10) will take the form: J[0,T, i] = X tr Nt (k) -X tr N (k) L (k) + k=0 k=0 +Xtr[(At -K(k)St)(XPijNj(k))(A -K(k)StУ +Q + K(k)VK(k)T]Lt(k +1). _ (15) k=0 j=1 Applying the rules of differentiating the trace function from the matrix [15], we calculate the derivatives 8J[0,T, i] 6 £4 £4 - =-{X tr N. (k) - X tr N. (k)Lt (k) + 6K (k) 6K (k) X0 i ( * X i ( * i ( * k=0 T-1 +X tr[(A - K (k)St )(X р,, jNj (k))(A - K (k)St f + k=0 j=1 50 Identification of discrete time systems with random jump parameters and incomplete information +Q, + K (k)ViKi (kf]L, (k +1)} = X 2[-L, (k +1) Ai (X PijNj (k))Sj 4=0 J=1 r +Li (k + 1)K (k )Si (X Pi, jNj (k ))Sj + L (k +1) K (k )Vi ]. (16) j=1 Equating this derivative to zero and assuming that each summand over i is equal to zero, we obtain formula (9) for determining the matrix Ki(k). Now calculate the finite difference of the Lyapunov function AW (k, N (k)) = W (k +1, Nt (k +1)) - W (k, Nt (k)) = T = tr Nt (k +1) + tr X Q + K (t)VK (t)T+Q (t)]Li (t) t=k+1 -tr N (k) - trX [Qi + K (t)VK (t)T +Q (t)]L (t) = t=k = tr N (k +1) - tr N (k) - tr[Q + K (k )ViKi (k)T+Q (k)]Lt (k). (17) Since the Lyapunov function (11) is positive, and its finite difference (17), specifying the matrices Q i (t) > 0 accordingly, is negative, this guarantees the stability of the extrapolator (7). The theorem is proved. 4. Stationary extrapolator In this case, the optimized criterion has the form J[0,i] = lim1e|X eT(k)e(k) | y(0) = y,), T t {k=o J (18) the transfer matrices K are constants and are determined from the following matrices algebraic equations: N = (A - K,S, )(XPjN3 )(A - K,S, )T + Qt + K (k)V,K, (k)T J j=1 (19) K = A, (XPi,jNj)ST[sSi (XPuNj )SJ + V]-1. (20) j=1 j=1 So, the stationary extrapolator takes the form x(k +1) = Ax(k) + f(k) + Kt (y(k) - Six(k) - Ht(k)), x(0) = x0. (21) Note that if there are positive definite solutions Nt (i = 1, r) of the matrices equation (19), then from the condition Q + > 0 follows the validity of Theorem 1.6 [17], and this means the stability of the stationary extrapolator (21). 5. Unknown input and jump parameter estimation As an algorithm for estimating an unknown input f (k) and (k) we will use LSM-estimates; in this case, an estimate can be constructed on the basis of minimizing the additional criterions [12] under the assumption that the value of the jump parameter is known (у = yt): Ъ(№) = X{lly(t) -St^HW +1 V(t -1) ||W2}, (22) G2 (f (k)) = X {I y(t) - H

Ключевые слова

неполная информация, оценки, цепь Маркова, алгоритм идентификации

Авторы

ФИООрганизацияДополнительноE-mail
Ким Константин СтаниславовичТомский государственный университетаспирант Института прикладной математики и компьютерных наукkks93@rambler.ru
Смагин Валерий ИвановичТомский государственный университет; Томский государственный университет радиоэлектроники и систем управленияпрофессор, доктор технических наук, профессор; профессорvsm@mail.tsu.ru
Всего: 2

Ссылки

Athans, M. (1968) The matrix minimum principle. Information and Control. 11. pp 592-606.
Li, F., Shi, P. & Wu, L. (2016) Control and Filtering for Semi-Markovian Jump Systems. New York: Springer.
Koshkin, G. & Smagin, V. (2016) Kalman filtering and forecasting algorithms with use of nonparametric functional estimators. Springer Proceedings in Mathematics & Statistics. 175. pp. 75-84. DOI: 10.1007/978-3-319-41582-6_6
Smagin, V.I. (2017) Prediction of states of discrete systems with unknown input of the model using compensation. Russian Physics Journal. 59(9). pp.1507-1514. DOI: 10.1007/s11182-017-0937-6
Smagin, V.I. & Smagin, S.V. (2011) Filtering for linear not stationary discrete system with unknown disturbances. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaya tekhnika i informatika - Tomsk State University Journal of Control and Computer Science. 16(3). pp. 43-50.
Gillijnsand, S. & Moor, B. (2007) Unbiased minimum-variance input and state estimation for linear discrete-time systems. Automatica. 43. pp. 111-116. DOI: 10.1016/j.automatica.2006.08.002
Kim, K.S. & Smagin, V.I. (2020) Filtration and diagnostics in discrete stochastic systems with jump parameters and multiplicative perturbations. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaya tekhnika i informatika - Tomsk State University Journal of Control and Computer Science. 51. pp. 79-86. DOI: 10.17223/19988605/51/9
Gagliardi, G., Casavola, A. & Famularo, D.A. (2012) Fault detection and isolation filter design method for Markov jump linear parameter-varying systems. International Journal of Adaptive Control and Signal Processing. 26(3/ SI). pp. 241-257. DOI: 10.1002/acs.1261
Yao, X., Wu, L. & Zheng, W.X. (2011) Fault detection filter design for Markovian jump singular systems with intermittent measurements. IEEE Transactions on Signal Processing. 59/7. pp. 3099-3109. DOI: 10.1109/TSP.2011.2141666
Wang, H., Wang, C., Gao, H. & Wu, L. (2006) An LMI approach to fault detection and isolation filter design for Markovian jump system with mode-dependent time-delays. Proc. of the American Control Conference. Minneapolis. USA. pp 5686-5691. DOI: 10.1109/ACC.2006.1657631
Wang, J., Yao, F. & Shen, H. (2014) Dissipativity-based state estimation for Markov jump discrete-time neural networks with unreliable communication links. Neurocomputing. 139/SI. pp. 107-113. DOI: 10.1016/j.neucom.2014.02.055
Zhu, Y., Zhong, Z., Zheng, W.X. et al. (2018) HMM-based H-infinity filtering for discrete-time markov jump LPV systems over unreliable communication channels. IEEE Transactions on Systems Man Cybernetics-Systems. 48(12). pp. 2035-2046. DOI: 10.1109/TSMC.2017.2723038
Zhang, H., Gray, W.S. & Gonzalez, O.R. (2005) Performance analysis of recoverable flight control systems using hybrid dynamical models. Proc. American Control Conference 2005 (ACC). Portland, Jun 08-10, 2005. pp. 2787-2792.
Ugrinovskii, V.A. & Pota, H.R. (2005) Decentralized control of power systems via robust control of uncertain Markov jump parameter systems. International Journal of Control. 78. pp. 662-677. DOI: 10.1109/CDC.2004.1429255
Sales-Setien, E. & Penarrocha-Alos, I. (2019) Markovian jump system approach for the estimation and adaptive diagnosis of decreased power generation in wind farms. Iet Control Theoryand Applications. 13(18). pp. 3006-3018. DOI: 10.1049/iet-cta.2018.6199
Cajueiro, D.O. (2002) Stochastic optimal control of jumping Markov parameter processes with applications to finance. Ph.D. Thesis. InstitutoTecnologico de Aeronautica-ITA, Brazil.
Dombrovskii, V., Obyedko, T. & Samorodova, M. (2018) Model predictive control of constrained markovian jump nonlinear stochastic systems and portfolio optimization under market frictions. Automatica. 87. pp. 61-68. DOI: 10.1016/j.automatica.2017.09.018
 Идентификация в дискретных системах со случайными скачкообразными параметрами при неполной информации | Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2021. № 54. DOI: 10.17223/19988605/54/6

Идентификация в дискретных системах со случайными скачкообразными параметрами при неполной информации | Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2021. № 54. DOI: 10.17223/19988605/54/6