Investigation of retrial queue system M|M|1 with phase-type retrial times | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2014. № 2(27).

Investigation of retrial queue system M|M|1 with phase-type retrial times

Retrial queueing models are used as stochastic modeling tool of many computer and communication systems such as call-centers, mobile phone systems, local computer networks with multiple random access. Consider a single-server queueing system. The customers form the Poisson input process with a rate L The customers' service times have an exponential distribution with a parameter If a customer finds server engaged, one joins the retrial queue (or orbit) in order to seek service again after a random delay that has a phase-type distribution. Let i(t) be the vector with components which are equal to a number of customers in each phase of the phase-type retrial at instant t. The process i(t) is a non-Markovian process. To extend i(t) to a Markov process, we introduce new random variables. Let k(t) be the indicator function of a server's state: k(t) = 0 if the server is vacant at moment t; k(t) = 1 if it is engaged at moment t. Therefore, the stochastic process {k(t), i(t)} is the Markovian process defined on the state space {(k,i)}, where one in N+1 components is finite and other N components are countable. Our purpose is to find the probability distribution of states for non-Markovian process N Z h (t). k=1 We use the asymptotic analysis method that allows us to find the probability distribution of process states in a marginal condition when the retrial time grows unlimited. It is shown that in the condition of unlimited growth, the probability distribution can be approximated by the multidimensional Gaussian distribution. The first and second orders of the asymptotic method provide as result the mean vector and covariate matrix correspondingly. To estimate the range of applicability of analytic results, we use simulations. Kolmogorov's distance as a comparison criteria of analytic and simulation results is used.

Download file
Counter downloads: 438

Keywords

система с повторными вызовами, фазовое распределение, retrial queue system, phase-type distribution

Authors

NameOrganizationE-mail
Nazarov Anatoly A.Tomsk State Universityanazarov@fpmk.tsu.ru
Yakovlev Nikoly I.Tomsk State Universityyakovlev_steppy@mail.ru
Всего: 2

References

Хинчин А.Я. Работы по математической теории массового обслуживания М. : Физматгиз, 1963.
Назаров А.А., Моисеева С.П. Метод асимптотического анализа в теории массового обслуживания. Томск : Изд-во НТЛ, 2006. 112 с.
Jesus R. Artalejo, Antonio Gomez-Corral. Retrial Queue Systems. A wmputational approach. Berlin ; Heidelberg : Springer- Verlag, 2008.
Бочаров П.П., Печинкин А.В. Теория массового обслуживания. М. : РУДН, 1995. С. 98-108.
Falin G.I., Templeton J.G.C. Retrial oueues. Chapman & Hall, 1997.
Yang T., Posner M.J.M., Templeton J.G.G., Li H. An approximation methods for M/G/1 retrial queue with general retrial times // Europian Journal of Operational Research. 1994. V. 76. P. 552-562.
Elldin A., Lind G. Elementary telephone traffic theory. Ericson Public Telecommunications, 1967.
SyskiR. Introduction to congestion theory in telephone systems. Amterdam : Elsevier Science Publisher, 1968.
Stollez R. Performance analysis and optimization of Inbound Call Centers. Berlin : Springer, 2003.
Wesolowski K. Mobile ramm^^t^ systems. N.Y. : John Wiley & Sons, 2002.
Giambene G. Queueing Theory and telecommunications: Networks and Applications. N.Y. : Springer, 2005.
Hammond J.L., O'ReillyP.J.P. Performance analysis of local computer networks. Massachusetts : Addison-Wesley, 1998.
Bruneel H., Kim. B.G. Discrete-Time models for communication systems including ATM. Boston : Kluwer Academic Publishers, 1993.
Параев Ю.И. Уравнения Ляпунова и Риккати. Томск : Изд-во Том. ун-та, 1989.
 Investigation of retrial queue system M|M|1 with phase-type retrial times | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2014. № 2(27).

Investigation of retrial queue system M|M|1 with phase-type retrial times | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2014. № 2(27).

Download full-text version
Counter downloads: 1143