The research of optimal choice method of bandwidth parameter for nonparametric estimation of reliability regression models | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2014. № 2(27).

The research of optimal choice method of bandwidth parameter for nonparametric estimation of reliability regression models

In the paper, we consider one of the most popular nonparametric estimators of regression reliability models proposed by R.Beran. Such estimator allows to evaluate the conditional reliability function with the given values of covariates by the following formula: - / Ч I Wi (x; h ) \ (t I x)= П]1"-^^ Y.a

Download file
Counter downloads: 320

Keywords

функция надёжности, регрессионная модель, непараметрическая оценка Берана, параметр сглаживания, параметр размытости, робастное оценивание, reliability function, regression model, nonparametric Beran estimator, bandwidth parameter, smoothing parameter, robust estimation

Authors

NameOrganizationE-mail
Demin Viktor A.Novosibirsk State Technical Universityvicdemin@gmail.com
Chimitova Ekaterina V.Novosibirsk State Technical Universityekaterina.chimitova@gmail.com
Schekoldin Vladislav Yu.Novosibirsk State Technical Universityraix@mail.ru
Всего: 3

References

Beran R. Nonparametic regression with randomly censored survival data // Technical report. Department of Statistics. Berkeley : University of California, 1981.
Dabrowska D.M. Nonparametric quantile regression with censored data // Sankhya Ser. A. 1992. V. 54. P. 252-259.
Gonzalez M.W., Cadarso S.C. Asymptotic properties of a generalized Kaplan-Meier estimator with some application // J. Nonparametric Statistics. 1994. No. 4. P. 65-78.
McKeague I. W., Utikal K.J. Inference for a nonlinear counting process regression model // Ann. Statist. 1990. V. 18. P. 1172-1187.
Van Keilegom I., AkritasM.G., Veraverbeke N. Estimation of the conditional distribution in regression with censored data: a comparative study // Computational Statistics & Data Analysis. 2001. V. 35. P. 487-500.
Akritas M.G. Nearest neighbor estimation of a bivariate distribution under random censoring// Ann. Statist. 1994. V. 22. P. 1299-1327.
Расин Д. Непараметрическая эконометрика: вводный курс // Квантиль. 2008. № 4. С. 7-26.
Хардле В. Прикладная непараметрическая регрессия. М. : Мир, 1993. 349 с.
Gang L., Somnath D. A bootstrap approach to nonparametric regression for right censored data // Technical report #99-8. 1999. P. 6-10.
Демин В.А., Чимитова Е.В. Выбор оптимального параметра сглаживания для непараметрической оценки регрессионной модели надежности // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2013. № 1(22). С. 59-65.
Rousseeuw P.J., Verboven S. Robust estimation in very small samples // Journal Computational Statistics & Data Analysis. 2002. V. 40(4). P. 741-758.
Кошкин Г.А. Основы страховой математики : учеб. пособие. Томск : Томский государственный университет, 2002. 116 с.
 The research of optimal choice method of bandwidth parameter for nonparametric estimation of reliability regression models | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2014. № 2(27).

The research of optimal choice method of bandwidth parameter for nonparametric estimation of reliability regression models | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2014. № 2(27).

Download full-text version
Counter downloads: 1143