Guaranteed parameter estimation of stochastic linear regression by sample of fixed size
The method of parameter estimation of the multivariate linear regression by sample of fixed size is proposed. This method makes possible to get the parameter estimators with guaranteed accuracy in the mean square sense. There are constructed and investigated the truncated sequential estimators of ARARCH(1,1), AR(1) and AR(2). Asymptotic efficiency of the parameter estimator AR(1) with unknown noise variance is established.
Keywords
гарантированная точность,
модель ARARCH,
усеченные последовательные оценки,
процесс авторегрессии,
guaranteed accuracy,
оценивание параметров,
truncated sequential estimators,
ARARCH model,
parameter estimation,
autoregressive processAuthors
Dogadova T.V. | Tomsk State University | aurora1900@mail.ru |
Vasiliev V.A. | Tomsk State University | vas@mail.tsu.ru |
Всего: 2
References
Dmitrienko A., Konev V., Pergamenshchikov S. Sequential generalized least squares estimator for an autoregressive parameter. Sequential Analysis. V. 16. Issue 1. P. 25-46. (1997).
Kuechler U., Vasiliev V. On a certainty equivalence design of continuous-time stochastic systems. SIAM Journal of Control and Optimization. V. 51. No. 2. P. 938-964. (2013).
Vorobeichikov S.E., Konev V.V. About sequential indification of stochastic systems. Technical Cybernetics. No. 4. P. 176-182. (1980).
Shiryaev A.N., Spokoiny V.G. Statistical experiments and decisions. Asymptotic theory. Singapore: World Scientific, (2000).
Konev V.V., Pergamenshchikov S.M. Truncated sequential estimation of the parameters in random regression. Sequential Analysis. V. 9. Issue 1. P. 19-41. (1990).
Vasiliev V.A. One investigation method of ratio type estimators. Preprint 5 of the Math. Inst. of Humboldt University, Berlin. P. 1-15. (2012); http://www2.mathematik.hu-berlin.de/publ/pre/2012/p-list-12.html
Vasiliev V.A. A truncated estimation method with guaranteed accuracy. Annals of the Institute of Statistical Mathematics, V. 66. Issue 1. P. 141-163. (2014).
Konev V.V. Sequential parameter estimation of stochastic dynamical systems. Tomsk: Tomsk Univ. Press. (1985).
Dobrovidov A.V., Koshkin G.M., Vasiliev V.A. Non-parametric state space models. Heber City, UT. USA: Kendrick Press. (2012).
Galtchouk L., Konev V. On sequential estimation of parameters in semimartingaleregression models with continuous time parameter. Annals of Statistics. (2001).
Kuechler U., Vasiliev V. On guaranteed parameter estimation of a multiparameter linear regression process. Automatica, Journal of IFAC, Elsevier. No. 46 (4). P. 637-646. (2010).
Fourdrinier D., Konev V., Pergamenshchikov S. Truncated sequential estimation of the parameter of a first order autoregressive process with dependent noises. Mathematical Methods of Statistics. (2009).
Borisov V.Z., Konev V.V. On sequential estimation of parameters in discrete-time processes. Automation and Remote Con trol. (1977).
Wald A. Sequential Analysis. N. Y.: Wiley. (1947).
Liptser R. Sh., Shiryaev A.N. Statistics of random processes. 1: General theory. N. Y.: Springer-Verlag. (1977). 2: Applica tions. N.Y.: Springer-Verlag. (1978).