On optimal adaptive prediction of multivariate ARMA(1,1) process | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2015. № 1(30).

On optimal adaptive prediction of multivariate ARMA(1,1) process

The problem of asymptotic efficiency of adaptive one-step predictors for ARMA(1,1) process with unknown dynamic parameters is considered. The predictors are based on the truncated estimators of the unknown matrix. The truncated estimation method is a modification of the truncated sequential estimation method, that yields estimators with a given accuracy by samples of fixed size. The criterion of prediction optimality is based on the loss function, defined as a linear combination of sample size and squared prediction error's sample mean. The cases of known and unknown variance of the noise model are studied. In the latter case the optimal sample size is a special stopping time.

Download file
Counter downloads: 409

Keywords

адаптивные прогнозы, асимптотическая риск-эффекитвность, многомерный АРМА, момент остановки, оптимальный размер выборки, усечённое оценивание, adaptive predictors, asymptotic risk efficiency, multivariate ARMA, optimal sample size, stopping time, truncated parameter estimators

Authors

NameOrganizationE-mail
Kusainov Marat IslambekovichTomsk State Universityrjrltsk@gmail.com
Всего: 1

References

Ljung L., Soderstrom T. System Identification Theory for the User. Prentice Hall. Upper Saddle River, 1983.
Ljung L. Theory and Practice of Recursive Identification. Cambridge : The MIT Press, 1987.
Konev V., Pergamenshchikov S. On the Duration of Sequential Estimation of Parameters of Stochastic Processes in Discrete Time // Stochastics. 1986. V. 18. Is. 2. P. 133-154.
Konev V., Pergamenshchikov S. Truncated Sequential Estimation of the Parameters in Random Regression // Sequential Analysis. 1990. V. 9, issue 1. P. 19-41.
Vasiliev V.A. Truncated Estimation Method with Guaranteed Accuracy // Annals of Institute of Statistical Mathematics. 2014. V. 66. P. 141-163.
Vasiliev V. Guaranteed Estimation of Logarithmic Density Derivative By Dependent Observations // Topics in Nonparametric Statis tics: Proceedings of the First Conference of the International Society for Non-parametric Statistics / eds. by M.G. Akritas et al. New York : Springer, 2014.
Sriram T. Sequential Estimation of the Autoregressive Parameter in a First Order Autoregressive Process // Sequential Analysis. 1988. V. 7. Is. 1. P. 53-74.
Konev V., Lai T. Estimators with Prescribed Precision in Stochastic Regression Models // Sequential Analysis. 1995. V. 14. Is. 3. P. 179-192.
Vasiliev V., Kusainov M. Asymptotic Risk-Efficiency of One-Step Predictors of a Stable AR(1) // Proceedings of XII All-Russian Conference on Control Problems. Moscow, 2014.
Kusainov M., Vasiliev V. On Optimal Adaptive Prediction of Multivariate Autoregression // Sequential Analysis. 2015. V. 34. Is. 2. (to be published).
Sriram T., IaciR. Sequential Estimation for Time Series Models. Sequential Analysis. 2014. V. 33. Is. 2. P. 136-157.
Box G., Jenkins G., Reinsel G. Time Series Analysis: Forecasting and Control. Wiley, Hoboken, 2008.
Pergamenshchikov S. Asymptotic Properties of the Sequential Plan for Estimating the Parameter of an Autoregression of the First Order // Theory of Probability and Its Applications. 1991. V. 36. Is. 1. P. 42-53.
Liptser R., Shiryaev A. Statistics of Random Processes. New York : Springer, 1977.
Gikhman I., SkorokhodA. Introduction to the Theory of Random Processes. Saunders, Philadelphia, 1969.
 On optimal adaptive prediction of multivariate ARMA(1,1) process | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2015. № 1(30).

On optimal adaptive prediction of multivariate ARMA(1,1) process | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2015. № 1(30).

Download full-text version
Counter downloads: 1082