Joint probability density function of the interval duration between an adjacent events of the modulated synchronous flow in conditions of fixed dead time and recurrence conditions of the flow
In the paper, the modulated synchronous twice stochastic flow of events is considered, which rate is piecewise constant random process X(t) with two states: Xj,X
2 (Xj > X
2). The time when process X(t) is staying in i-state has exponential probability distribution function with parameter а
{, i = 1,2 . During the time random interval when X(t) = X
{, there is a Poisson flow with the rate X j, i = 1,2 . A state transition of process X(t) occurs in arrival moment of the Poisson flow event, moreover, the passing from the first to the second state is realized with probability p, the pas the second to the first state is realized with probability q. The flow functions in conditions of dead time, which is one of the falsifying factors of state and parameter estimation of the flow. After each registered event there is time of fixed duration T (dead time), during which another flow events is inaccessible for observation. One considers nonextendable dead time, that is all events, which happen during dead time interval, do not arise its prolongation. When duration of dead time period is finished, the first happened event creates dead time period of duration T again, and etc. Note that for the flow, which functions in dead time conditions, events are observable if they did not get into dead time interval (events which cause its approach). For the flow which functions in dead time absence all events are observable. The derivation of the explicit form of the formula for the joint probability density function of the interval duration between adjacent events of the observable flow is hold. On the base of the joint probability density function as well as the probability density function is obtained before a probability characteristics of the flow such as expectation function, expected mean square and covariance function are given. A flow characteristic called probability of the observable event type was introduced in the research. There are two types of the considered flow events: 1) the Poisson flow events of the X
1 intensity; 2) the Poisson flow events of the X
2 intensity. The formulae for introduced probabilities are derived. It is proved that the modulated synchronous flow in condition of fixed dead time is a recurrence flow because its joint probability density function is factored under certain conditions. The obtained formulae will be used in the future investigation to estimate input flow parameters using the method of moment or the maximum likelihood method.
Keywords
модулированный синхронный поток событий,
мертвое время,
совместная плотность вероятностей,
условия рекуррентности потока,
modulated synchronous flow,
dead time,
joint probability density,
recurrence condition of a flow,
значения длительности интервала между соседними событиями потока,
the duration of the interval between the values of neighboring events flowAuthors
Sirotina Maria N. | Tomsk State University | mashuliagol@mail.ru |
Всего: 1
References
Горцев А.М., Голофастова М.Н. Оптимальная оценка состояний модулированного синхронного дважды стохастического потока событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2013. № 2(23). C. 42-53.
Сиротина М.Н. Оптимальная оценка состояний модулированного синхронного дважды стохастического потока событий в условиях непродлевающегося мертвого времени // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2014. № 1(26). C. 63-74.
Aleksandr Gortsev and Mariya Sirotina. Joint Probability Density Function of Modulated Synchronous Flow Interval Duration // ITMM 2014: Proceedings 13th International Scientific Conference named after A.F. Terpugov. Anzhero-Sudzhensk. Russia. November 20-22. 2014. Springer. P. 145-152.
Сиротина М.Н., Горцев А.М. Плотность вероятностей длительности интервала между соседними событиями в модулирован ном синхронном потоке при непродлевающемся мертвом времени // Материалы Международной научной конференции, посвященной 80-летию профессора, доктора физико-математических наук Геннадия Алексеевича Медведева. Белоруссия. Минск. 23-26 февраля. 2015. Минск : Изд-во РИВШ, 2015. С. 299-304.
Дудин А.Н., Клименок В.Н. Системы массового обслуживания с коррелированными потоками. Минск : Изд-во БГУ, 2000. 175 с.
Kingman J.F.C. On doubly stochastic Poisson process // Proceedings Cambridge Phylosophical Society. 1964. V. 60, No. 4. P. 923 930.
Башарин Г.П., Кокотушкин В.А., Наумов В.А. О методе эквивалентных замен расчета фрагментов сетей связи // Известия АН СССР. Техническая кибернетика. 1979. № 6. С. 92-99.
Башарин Г.П., Кокотушкин В.А., Наумов В.А. О методе эквивалентных замен расчета фрагментов сетей связи // Известия АН СССР. Техническая кибернетика. 1980. № 1. С. 55-61.
Neuts M.F. A versatile Markov point process // Journal of Applied Probability. 1979. V. 16. P. 764-779.
Lucantoni D.M. New results on the single server queue with a batch markovian arrival process // Communication in Statistics Stochastic Models. 1991. V. 7. P.1-46.
Lucantoni D.M., Neuts, M.F. Some steady-state distributions for the MAP/SM/1 queue // Communication in Statistics Stochastic Models. 1994. V. 10. P. 575-598.
Лившиц К.Н., Бублик Я.С. Вероятность разорения страховой компании при дважды стохастическом потоке страховых выплат // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 1(10). С. 66-77.
Yang Y.W. Woo Shin. BMAP/G/1 queue with correlated arrivals of customers and disasters // Operation Research Letters. 2004. V. 32, Issue 4. P. 364-373.
Artalejo Jesus R., Chakravarthy Srinivas R. Computational analysis of the maximal queue length in the MAP/M/c retrival queue // Applied Mathematics and Computation. 2006. V. 183, Issue 2. P. 1399-1409.
Best J. Doubly Stochastic Processes: an Approach for Understanding Central Nervous System Activity // Selected Topics on Applied Mathematics, Circuits, Systems and Signals. WSEAS Press, 2009. P. 155-158.
Bushalnov I. V., Gortsev A.M., Nezhel 'skaya L.A. Estimating parameters of the synchronous twofold-stochastic flow of events // Automation and Remote Control. 2008. V. 69, No. 9. P. 1517-1533.
Gortsev A.M., Nezhel 'skaya L.A. Estimation of the dead time period and intensities of the synchronous double stochastic event flow // Radiotekhnika. 2004. No. 10. P. 8-16.
Василевская Т.П., Горцев А.М., Нежельская Л.А. Оценивание длительности мертвого времени и параметров синхронного альтернирующего потока с проявлением либо непроявлением событий // Вестник Томского государственного университета. 2004. № 9(II). С. 129-138.
Горцев А.М., Нежельская Л.А. Оценивание длительности мертвого времени и параметров синхронного альтернирующего потока событий // Вестник Томского государственного университета. 2003. № 6. С. 232-239.
Горцев А.М., Нежельская Л.А. Оцениваение параметров синхронного дважды стохастического потока событий методом моментов // Вестник Томского государственного университета. 2002. № 1(1). С. 24-29.
Gortsev A.M., Nezhel 'skaya L.A. Estimation of the parameters of a synchro-alternating Poisson event flow by the method of moments // Radiotekhnika. 1995. V. 40, No. 7-8. P. 6-10.
Леонова М.А., Нежельская Л.А. Оценка максимального правдоподобия длительности мертвого времени в обобщенном асинхронном потоке событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2013. № 2 (23). С. 54-63.
Горцев А.М., Леонова М.А., Нежельская Л.А. Совместная плотность вероятностей длительности интервалов обобщенного асинхронного потока событий при непродлевающемся мертвом времени // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2012. № 4 (21). С. 14-25.
Леонова М.А., Нежельская Л.А. Вероятность ошибки при оценивании состояний обобщенного синхронного потока событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2012. № 2(19). С. 88-101.
Gortsev A.M., Nezhel'skaya L.A. An asynchronous double stochastic flow with initiation of superfluous events // Discrete Mathematics and Applications. 2011. V. 21, No. 3. P. 283-290.
Горцев А.М., Нежельская Л.А. Оценивание параметров асинхронного потока с инициированием лишних событий методом моментов // Вестник Томского государственного университета. 2006. № 18. С. 267-273.
Gortsev A.M., Nezhel 'skaya L.A., Shevchenko T.I. Estimation of the states of an MC-stream of events in the presence of measurement errors // Russian Physics Journal. 1993. V. 36, No. 12. P. 1153-1167.
Калягин А.А., Нежельская Л.А. Оценка дилтельности мертвого времени в обобщенном полуcинхронном потоке событий // Новые информационные технологии в исследовании сложных структур : материалы Десятой рос. конф. с междунар. участием (9-13 июня 2014 г.). Томск : Издательский Дом Томского государственного университета, 2014. С. 96-97.
Горцев А.М., Калягин А.А., Нежельская Л.А. Оптимальная оценка состояний обобщенного полусинхронного потока событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 2(11). С. 66-81.
Горцев А.М., Нежельская Л.А. Полусинхронный дважды стохастический поток событий при продлевающемся мертвом времени // Вычислительные технологии. 2008. Т. 13, № 1. С. 31-41.
Gortsev A.M., Nezhel'skaya L.A. Estimation of the dead-time period and parameters of a semi-synchronous double-stochasic stream of events // Measurement Techniques. 2003. V. 46, No. 6. P. 536-545.
Горцев А.М., Нежельская Л.А. Оценивание параметров полусинхронного дважды стохастического потока событий методом моментов // Вестник Томского государственного университета. 2002. № 1(1). С. 18-23.
Нежельская Л.А. Оптимальное оценивание состояний полусинхронного потока событий в условиях его частичной наблюдаемости // Вестник Томского государственного университета. 2000. № 269. С. 95-98.
Горцев А.М., Нежельская Л.А. О связи MC-потоков и MAP-потоков событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2011. № 1(14). С. 13-21.
Gortsev A.M., Nezhel'skaya L.A., Solov'ev A.A. Optimal State Estimation in MAP Event Flows with Unextendable Died Time // Automation and Remote Control. 2012. V. 73, No. 8. P. 1316-1326.
Апанасович В.В., Коляда А.А., Чернявский А.Ф. Статистический анализ случайных потоков в физическом эксперименте. Минск : Университетское, 1988. 254 с.
Gortsev A.M., Nezhel 'skaya L.A. Estimate of parameters of synchronously alternating Poisson stream of events by the moment method // Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika). 1996. V. 50, No. 1. P. 56-63.
Нежельская Л.А. Оптимальная оценка состояний синхронного MC-потока событий // Избранные доклады международной конференции «Всесибирские чтения по математике и механике». Томск : Изд-во ТГУ, 1997. Т. 1. С. 97-102.
Bushlanov I.V., Gortsev A.M. Optimal estimation of the states of a synchronous double stochastic flow of events // Automation and Remote Control. 2004. V. 65, No. 9. P. 1389-1399.
Gortsev A.M., Nezhel 'skaya L.A. Estimation of the dead time period and intensities of the synchronous double stochastic event flow // Radiotekhnika. 2004. No. 10. P. 8-16.
Горцев А.М., Нежельская Л.А. Синхронный дважды стохастический поток событий при продлевающемся мертвом времени // Теория вероятностей, случайные процессы, математическая статистика и приложения : материалы междунар. конф. Минск : Изд-во БГУ, 2005. С. 60-69.