Modulated MAP states optimal estimation under conditions of its partial observability | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2015. № 3(32).

Modulated MAP states optimal estimation under conditions of its partial observability

This paper considers the modulated MAP, which rate is a piecewise constant random process /(t) with two states: /(t) = / and /(t) = / (/ > / > 0). The time when the process /(t) remains at the i-th state, i - 1,2, depends on two random values: 1) the first random value has the exponential distribution function F/ - = 1 - e '', i = 1,2; when the i-th state ends, the process /(t) transits with the probability equal to one from the i-th state to the j-th state, i, j = 1,2 (i Ф j); 2) the second random value has the exponential distribution function F/ - = 1 - e , i = 1,2; when the i-th state ends, the process /(t) transits with the probability P 1 (/ | /) from the i-th state to the j-th state (i Ф j) and a flow event occurs or /(t) transits with the probability P 0 (/ | /) from the i-th state to the j-th state (i ^ j) but an event does not occur, or the process /(t) transits with the probability P 1 (/ | /) from the i-th state to the i-th state and a flow event occurs. Here P 1 (/j | /) + P 0 (/j | /) + P 1 (/ | /) = 1, i, j = 1,2, i Ф j. The block transition rate matrix for the process /(t) is as follows: -(а 1 + /) а 1 +/ 1P 0 (/ 2| /) а 2 +/ 2P 0(/ 1 | / 2) -(а 2 +/ 2) /1P1 (/J/1) /1P1 (/ 2|/) / 2 P1 (/1 | / 2 ) / 2 P1 (/ 2|/ 2) = 1D0 | Dj| . D = An event generates the period of time called the dead time, during which the flow cannot be observed. After this period ends, a new event also generates the dead time. Having only a sample (t 1,., t n) of events moments, we need to estimate the flow states. The optimal states estimation algorithm is as following: 1) at the initial moment t 0 a priori probability л 1 that /(t) is in / is calculated using the formula . =_а 2 +/2 [1 - P (/ 2|/ 2)]_ ; а 12 + / [1 -P 1 (/ | /)] + / 2[1 -P 1 (/ 2 | / 2)] 2) in the interval (t 0, t 1) a posteriori probability w(/ 1| t) is calculated using the formula | t) = 1 2 w(/1 0 + )-w2 1 w(/1 0 + ^--' ; 0 ) , w(/ | t0 + 0) = .1; ' w 2 - w(/ 1| t 0 + 0)-[ - w(/ 1| t 0 + 0)]e A(w2 w1 Х"0 ' ^ l0 > 3) at event occurring moment t k a posteriori probability w(/ 1| t k + 0) is calculated using the formula + / 2 ^(/1 |/ 2 ЫУК/ |/)-/ 2 P1 (/1 |/ 2 )]w(/1 | tk - 0) ' /2 [1 - P0 (М/)] + [[-/2-/1P0 (/J/) + / 2 P0 (М/ )]-w(/1 | tk - 0) where instead of w(/ 1| t k - 0) the value calculated on the formula w> 2 -w(/ | tk + 0)]-w 2[ -w(/ | tk + 0)e -w1 )-tk) W2 -w(/1 | tk + 0)-[ -w(/1 | tk + 0)e -w1 )(-tk) at t k, k = 1,2,., is used; 4) in the interval (t k, t k + T dead] the probability w(/ 1| t) can be found as w(/ 11) = . + [w(/ | t k + 0)-. 1 ]• e k 5) in the interval (t k + T dead, t k+1), k = 1,2,., the value w(/ 1| t) can be calculated by formula used on the step 3, where instead of w(/ 1| t k + 0) the value w(/ 1| t k + T dead) calculated on the step 4 is used. Then go to the step 3. The steps 3-5 are reiterated during observing time. Simultaneously with probability calculation we estimate the flow states: if w(/ 1| t) > w(/ 2| t) than / (t) = / 1, otherwise / (t) = / 2. The results show that the bigger а i, i-1,2, the higher estimation error, and that the bigger quotient / 1// 2, the better estimation.

Download file
Counter downloads: 357

Keywords

модулированный MAP-поток событий, оптимальное оценивание состояний, метод максимума апостериорной вероятности, непродлевающееся мертвое время, Modulated MAP, optimal state estimation, method of a posteriori probability maximum, non-extendable dead time

Authors

NameOrganizationE-mail
Berezin Dmitriy V.Tomsk State Universityberezin14@mail.ru
Nezhel'skaya Lyudmila A.Tomsk State Universityludne@mail.tsu.ru
Всего: 2

References

Kingman J.F.C. On doubly stochastic Poisson process // Proc. of Cambridge Philosophical Society. 1964. V. 60, No. 4. P. 923-930.
Башарин Г.П., Кокотушкин В.А., Наумов В.А. О методе эквивалентных замен расчета фрагментов сетей связи // Изв. АН СССР. Техн. кибернетика. 1979. № 6. С. 92-99.
Башарин Г.П., Кокотушкин В.А., Наумов В.А. О методе эквивалентных замен расчета фрагментов сетей связи // Изв. АН СССР. Техн. кибернетика. 1980. № 1. С. 55-61.
NeutsM.F. A versatile Markov point process // Journal of Applied Probability. 1979. No. 16. Р. 764-779.
Lucantoni D.M. New results on the single server queue with a batch Marcovian arrival process // Communications in Statistics Sto chastic Models. 1991. No. 7. Р. 1-46.
Дудин А.Н., Клименок В.Н. Системы массового обслуживания с коррелированными потоками. Минск : Изд-во БГУ, 2000. 175 с.
Nezhel 'skaya L.A. Optimal state estimation in modulated MAP event flows with unextendable dead time // Communications in Com puters and Information Sciences: proceedings of the 13th International Scientific Conference ITMM 2014 named after A.F. Ter-pugov «Information Technologies and Mathematical Modeling» (November 20-22, 2014). Cham Heidelberg ; New York ; Dordrecht ; London : Springer, 2014. Р. 342-350.
Gortsev A.M., Nezhel 'skaya L.A., Solov'ev A.A. Optimal state estimation in MAP event flows with unextendable dead time // Automa tion and Remote Control. 2012. No. 8. Р. 1316-1326.
Gortsev A.M., Nezhel'skaya L.A., Shevchenko T.I. Estimation of the states of an MC-stream of events in the presence of measurement errors // Russian Physics Journal. 1993. V. 36, No. 12. Р. 1153-1167.
Gortsev A.M., Nezhel 'skaya L.A. An asynchronous double stochastic flow with initiation of superfluous events // Discrete Mathematics and Applications. 2011. V. 21, No. 3. P. 283-290.
Bushlanov I. V., Gortsev A.M., Nezhel 'skaya L.A. Estimating parameters of the synchronous twofold stochastic flow of events // Automation and Remote Control. 2008. V. 69, No. 9. P. 1517-1533.
Gortsev A.M., Nezhel'skaya L.A. Estimation of the dead time period and intensities of the synchronous double stochastic event flow // Радиотехника. 2004. No. 10. P. 8-16.
Gortsev A.M., Nezhel 'skaya L.A. Estimation of the dead time period and parameters of a semi-synchronous double stochastic stream of events // Measurement Techniques. 2003. V. 46, No. 6. P. 536-545.
Gortsev A.M., Nezhel'skaya L.A. Estimation of parameters of synchronously alternating Poisson stream of events by the moment method // Telecommunications and Radio Engineering. 1996. V. 50, No. 1. P. 56-63.
Gortsev A.M., Nezhel'skaya L.A. Estimation of parameters of synchro-alternating Poisson event flow by the method of moments // Радиотехника. 1995. V. 40, No. 7-8. P. 6-10.
Gortsev A.M., Sirotina M. Joint probability density function of modulated synchronous flow interval duration // Communications in Computers and Information Sciences: proceedings of the 13th International Scientific Conference ITMM 2014 named after A.F. Terpugov «Information Technologies and Mathematical Modeling» (November 20-22, 2014). Cham Heidelberg ; New York ; Dordrecht ; London : Springer, 2014. P. 145-152.
 Modulated MAP states optimal estimation under conditions of its partial observability | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2015. № 3(32).

Modulated MAP states optimal estimation under conditions of its partial observability | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2015. № 3(32).

Download full-text version
Counter downloads: 864