Model Predictive Control for Nonlinear Stochastic Systems with Markovian Jumps under Constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2015. № 3(32).

Model Predictive Control for Nonlinear Stochastic Systems with Markovian Jumps under Constraints

Let the control object is described by the equation x(k +1) = Ax(k) + B[a(k +1),k + 1]u(k) + f (x(k), u(k), w(k), a(k +1)), (1) where x(k) is the n x - dimensional vector of state, u(k) is the n u - dimensional vector of control; w(k) is the n w - dimensional vector of white noses with zero-mean and identity covariance matrix; a(k) (k = 0,1,2.) denotes a time-invariant Markov chain taking values in a finite set of observable states {1,2,.,v} with the known transition probability matrixP = [P j J (i, je{i,2,...,v}), P } i = P {a(k+1)=a j |a(k)=a i} , V V E P ji = 1, and the initial distribution p t = P {a(0) = i} (i = 1,2,..., v) , £ p t = 1. j=1 i=1 It is assumed that the state of Markov chain is observable at time instant k, and w(k) is independent of the Markov chain a(k) (k = 0,1,2.). The function f is defined by its statistical properties as follows: M { f (x(k),u(k),w(k),a(k+1))/x(k),a(k)=a j} = 0 , M { f (x(k ),u(k ),w(k ),a(k+1)) f (x( k ),u(k), w( k ),a( k+1) )/x(k ),a(k)=a j } = T [a(k), k ] + +£ T (x (k)W'x(k)+u (k)M [a(k),k]u(k)) , for all x(k), where r=n(n+1)/2; T , W , and M = (C ) C (i = 1, r), T = (d ) D are positive semidefinite and symmetric matrices. The following constraints are imposed on the control variables umin(k) < S(k)u(k) < um ax(k), (2) where S(k) is a matrix of corresponding dimension. For control of system (1) we synthesize the strategies with a predictive control model. At each step k we minimize the quadratic criterion with a receding horizon J (k+p/k) = M J E x (k+i) R 1 (k ,i) x(k+i) +u (k+i-1/k )R 2 (k,i-1)u(k+i-1 k)/x(k ),a(k)=a j}, on trajectories of system (1) over the sequence of predictive controls u(k/k),.,u(k+p-1/k), which depend on system's state and on the state of Markov chain at moment k, under constraints (2), where R^k, i) > 0, R2(k, i) > 0are weigh matrices of corresponding dimensions; p is a prediction horizon, k is a current moment. The synthesis of predictive control strategies is reduced to the sequence of quadratic programming tasks.

Download file
Counter downloads: 343

Keywords

нелинейные стохастические системы, прогнозирующее управление, марковские скачки, ограничения, stochastic nonlinear systems, model predictive control, Markovian jumps, constrains

Authors

NameOrganizationE-mail
Dombrovskii Vladimir V.Tomsk State Universitydombrovs@ef.tsu.ru
Obyedko Tatyana Y.Tomsk State Universitytatyana.obedko@mail.ru
Samorodova Mariya V.Tomsk State Universitysamorodova21@gmail.com
Всего: 3

References

Пакшин П.В. Дискретные системы со случайными параметрами и структурой. М. : Физматлит, 1994.
Пакшин П.В., Ретинский Д.М. Робастная стабилизация систем случайной структуры с переключаемой статической обратной связью по выходу // Автоматика и телемеханика. 2005. № 7. C. 135-147.
Домбровский В.В., Объедко Т.Ю. Управление с прогнозированием системами с марковскими скачками при ограничениях и применение к оптимизации инвестиционного портфеля // Автоматика и телемеханика. 2011. № 5. С. 96-112.
Смагин В.И., Поползухина Е.В. Синтез следящих систем управления для объектов со случайными скачкообразными параметрами и мультипликативными возмущениями // Вестник Томского государственного университета. 2000. № 271. С. 171-175.
Blackmore L., Bektassov A., Ono M., WUHams B.C. Robust optimal predictive control of jump Markov linear systems using particles // Lecture Notes in Computer Science. 2007. V. 4416. P. 104-117.
Costa O.L.V., Okmura R.T. Discrete-time mean-variance optimal control of linear systems with Markovian jumps and multiplicative noise // International Journal of Control. 2009. V. 82, No. 2. P. 256-267.
Costa O.L. V., Oliveira A. Optimal mean-variance control for discrete-time linear systems with Markovian jumps and multiplicative noises // Automatica. 2012. V. 48, No. 2. P. 304-315.
Dragan V., Morozan T. The Linear Quadratic Optimization Problems for a Class of Linear Stochastic Systems With Multiplicative White Noise and Markovian Jumping // IEEE Transactions on Automatic Control. 2004. V. 49, No. 5. P. 665-675.
ElliottR.J., Aggoun L., Moore J.B. Hidden Markov Models: Estimation and Control. Berlin : Springer-Verlag, 1995.
Li X., Zhou X. Y. Indefinite stochastic LQ control with Markovian jumps in a finite time horizon // Communications in Information and Systems. 2002. No. 2. P. 265-282.
Rawling5 J. Tutorial: Model Predictive Control Technology // Proc. Amer. Control Conf. San Diego. California. June 1999. P. 662676.
Yaz E. A control scheme for a class of discrete nonlinear stochastic systems // IEEE Transactions on Automatic Control. 1987. V. AC-32, No. 1. P. 77-80.
Yaz E. Robust design of Stochastic controllers for nonlinear systems // IEEE Transactions on Automatic Control. 1989. V. AC-34, No. 3. P. 349-353.
Домбровский В.В., Домбровский Д.В., Ляшенко Е.А. Управление с прогнозированием нелинейными стохастическими системами при ограничениях // Вестник Томского государственного университета. 2006. № 18. С. 320-323.
Novara C., Fagiano L., Milanese M. Direct feedback control design for nonlinear systems // Automatica. 2013. V. 49. P. 849-860.
Mhaskar P., Nael H. El-Farra, Panagiotis D.C. Robust hybrid predictive control of nonlinear systems // Automatica. 2005. V. 41. P. 209-217.
 Model Predictive Control for Nonlinear Stochastic Systems with Markovian Jumps under Constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2015. № 3(32).

Model Predictive Control for Nonlinear Stochastic Systems with Markovian Jumps under Constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2015. № 3(32).

Download full-text version
Counter downloads: 865