Risk efficiency of adaptive one-step prediction of autoregression with parameter drift
A scalar stable autoregressive process with the dynamic parameter corrupted by additive noise is studied. The model parameters are assumed to be unknown. The truncated estimators of the parameters are used to build adaptive one-step predictors. The associated problem is to minimize a risk function of special form, defined to account for sample size and squared prediction error's sample mean. A sequential procedure is introduced to achieve the minimal risk.
Keywords
adaptive predictors,
asymptotic risk efficiency,
optimal sample size,
scalar autoregression,
stopping time,
truncated parameter estimators,
адаптивные прогнозы,
асимптотическая риск-эффективность,
оптимальный размер выборки,
скалярная авторегрессия,
момент остановки,
усечённое оцениваниеAuthors
Kusainov Marat I. | Tomsk State University | rjrltsk@gmail.com |
Всего: 1
References
Weyer E., Campi M. Non-Asymptotic Confidence Ellipsoids for the Least-Squares Estimate // Automatica. 2002. V. 38, Is. 9. P. 1539-1547.
Weyer E., Campi M. Guaranteed Non-Asymptotic Confidence Regions in System Identification // Automatica. 2005. V. 41, Is. 10. P. 1751-1764.
Liptser R., Shiryaev A. Statistics of Random Processes. N.Y. : Springer, 1977.
Konev V., Vorobeichikov S. On Sequential Identification of Stochastic Systems // Izvestia of USSR Academy of Sciences, Technical Cybernetics. 1980. Is. 4. P. 176-182.
Konev V. Sequential Parameter Estimation of Stochastic Dynamical Systems. Tomsk University Press, Tomsk, 1985.
Vasiliev V., Konev V. The Sequential Parameter Identification of the Dynamic Systems in the Presence of Multiplicative and Additive Noises in Observations // Automation and Remote Control. 1985. V. 46. P. 706-716.
Konev V., Pergamenshchikov S. On the Duration of Sequential Estimation of Parameters of Stochastic Processes in Discrete Time // Stochastics. 1986. V. 18, Is. 2. P. 133-154.
Galtchouk L., Konev V. On Sequential Estimation of Parameters in Semimartingale Regression Models with Continuous Time Param eter // Annals of Statistics. 2001. V. 29, Is. 5. P. 1508-1536.
Kuchler U., Vasiliev V. On Sequential Parameter Estimation for Some Linear Stochastic Differential Equations with Time Delay // Sequential Analysis. 2001. V. 20, Is. 3. P. 117-146.
Kuchler U., Vasiliev V. On Guaranteed Parameter Estimation of a Multiparameter Linear Regression Process // Automatica. 2010. V. 46, Is. 4. P. 637-646.
Malyarenko A., Vasiliev V. On Parameter Estimation of Partly Observed Bilinear Discrete-Time Stochastic Systems // Metrika. 2012. V. 75, Is. 3. P. 403-424.
Politis D., Vasiliev V. Sequential Kernel Estimation of a Multivariate Regression Function // Proceedings of IX International Conference 'System Identification and Control Problems'. Moscow, 2012. P. 996-1009.
Konev V., Pergamenshchikov S. Truncated Sequential Estimation of the Parameters in Random Regression // Sequential Analysis. 1990. V. 9, Is. 1. P. 19-41.
Konev V., Pergamenshchikov S. On Truncated Sequential Estimation of the Drifting Parametermean in the First Order Autoregres-sive Models // Sequential Analysis. 1990. V. 9, Is. 2. P. 193-216.
Fourdrinier D., Konev V., Pergamenshchikov S. Truncated Sequential Estimation of the Parameter of a First Order Autoregressive Process with Dependent Noises // Mathematical Methods of Statistics. 2008. V. 18, Is. 1. P. 43-58.
Vasiliev V. A Truncated Estimation Method with Guaranteed Accuracy // Annals of Institute of Statistical Mathematics. 2014. V. 66. P. 141-163.
Sriram T. Sequential Estimation of the Autoregressive Parameter in a First Order Autoregressive Process // Sequential Analysis. 1988. V. 7, Is. 1. P. 53-74.
Konev V., Lai T. Estimators with Prescribed Precision in Stochastic Regression Models // Sequential Analysis. 1995. V. 14, Is. 3. P. 179-192.
Vasiliev V., Kusainov M. Asymptotic Risk-Efficiency of One-Step Predictors of a Stable AR(1) // Proceedings of XII All-Russian Conference on Control Problems. Moscow, 2014. P. 2619-2627.
Kusainov M., Vasiliev V. On Optimal Adaptive Prediction of Multivariate Autoregression // Sequential Analysis. 2015. V. 34, Is. 2. 23 p.
Kusainov M. On Optimal Adaptive Prediction of Multivariate ARMA(1,1) Process // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2015. № 1(30). P. 44-57.
Malyarenko A. Estimating the Generalized Autoregression Model Parameters for Unknown Noise Distribution // Automation and Remote Control. 2012. V. 71, Is. 2. P. 291-302.