Analysis of the process of control quality of medical service in the scope of compulsory health insurance program
The relevance of the presented paper deals with the necessity of determining problems and effective solutions for medical organizations on the stage of medical documentation reports control purposely for forecasting the average of financial resources that can be obtained in the scope of compulsory health insurance program. The aim of the study. For the purpose of further issues definition to present formal model of the analyzed process using a set of system analysis methods. The methods. System analysis methods, especially IDEF0 diagrams and activity diagrams; for estimation of medical expert's agreement Cohen's kappa was used. The results. Based on the specification documents and expert's experience the spread description on the process «the control of volume, duration, quality and conditions of medical service assignment by medical organizations» provided by medical insurance organization is presented. Input and output parameters, elements of process management were determined. As a result of decomposition, subpro-cesses were presented within activity diagrams. Conclusions. The obtained results allows to conclude that there is a set of problems which appear when medical organizations send reports for getting financial resources for clinical service realization in the scope of compulsory health insurance program. On the grounds of determined problems, we can conclude that it is necessary to develop an intellectual information system for estimating clinical records concerning getting financial resources for clinical service. In respect that human factor influences on the main stages of the analyzed process, we propose to use fuzzy logic as an inference engine. The self-learning function of the system will provide case-based reasoning.
Keywords
системный анализ,
интеллектуальные информационные системы,
обязательное медицинское страхование,
нечеткая логика,
анализ прецедентов,
system analysis,
intellectual information systems,
medical insurance,
fuzzy logic,
case-based reasoningAuthors
Taranik Maksim A. | Tomsk Polytechnic University | taranik@tpu.ru |
Kopanitsa Georgy D. | Tomsk Polytechnic University | georgy.kopanitsa@gmail.com |
Всего: 2
References
Приказ ФФОМС № 230 «Об утверждении Порядка организации и проведения контроля объемов, сроков, качества и условий предоставления медицинской помощи по обязательному медицинскому страхованию» от 01 декабря 2010 г.
Силич В.А., Силич М.П. Теория систем и системный анализ : учеб пособие. Томск : Томский политехнический университет, 2010. 281 с.
Перегудов Ф.И., Тарасенко Ф.П. Основы системного анализа : учеб. 2-е изд., доп. Томск : Изд-во НТЛ, 1997. 396 с.
Методология IDEF0. Стандарт. Русская версия. М. : Метатехнология, 1993. 107 с.
Буч Г., Рамбо Д., Джекобсон А. Язык UML. Руководство пользователя / пер. с англ. М. : ДМК, 2000. 432 с.
Cohen's kappa. URL: http://en.wikipedia.org/wiki/Cohen%27s_kappa (дата обращения: 15.05.2015).
Федеральный закон № 326 «Об обязательном медицинском страховании в Российской Федерации» от 29 ноября 2010 г.
Федеральный закон № 323 «Об основах охраны здоровья граждан в Российской Федерации» от 21 ноября 2011 г.
Приложение № 5 к Регламенту проведения предварительного медико-экономического контроля реестров счетов на оплату медицинской помощи, представляемых в электронном виде, утвержденному приказом ТФОМС Томской области от 13.11.2013 № 265.
Zadeh L.A. Fuzzy Sets // Information and Control. 1965. No. 8. P. 338-353.
Тараник М., Копаница Г. Анализ задач и методов построения интеллектуальных медицинских систем // Врач и информационные технологии. 2014. № 3. С. 6-12.
AnoojP. Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules // Journal of King Saud University - Computer and Information Science. 2012. №. 24. P. 27-40.
Samuel O., Omisore M., Ojokoh B. A web based decision support system driven by fuzzy logic for the diagnosis of typhoid fever // Expert Systems with Applications. 2013. №. 40. P. 4164-4171.
Castanho M., Hernandes F. Re A., Rautenberg S., Billis A. Fuzzy expert system for predicting pathological stage of prostate cancer // Expert Systems with Applications. 2013. №. 40. P. 466-470.
Pal D., Mandana K., Pal S. [etc.]. Fuzzy expert system approach for coronary artery disease screening using clinical parameters // Knowledge-Based Systems. 2012. №. 36. P. 162-174.
Castillo O., Melin P., Ramirez E., Soria J. Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system // Expert Systems with Applications. 2012. №. 39. P. 2947-2955.
Haghighi P., Burstein F., Zaslavsky A., Arbon P. Development and evaluation of ontology for intelligent decision support in medical emergency management for mass gatherings // Decision Support Systems. 2013. №. 54. P. 1192-1204.
Bequm S., Barua S., AhmedM.U. Physiological sensor signals classification for healthcare using sensor data fusion and case-based reasoning // Sensors. 2014. №. 14. P. 11770-11785.
Gonzalez C., LopezD.M., BlobelB. Case-based reasoning in intelligent Health Decision Support Systems // pHealth 2013: Studies in Health Technology and Informatics. №. 189. P. 44-49.
Sharaf-EI-Deen D.A., Moawad I.F., Khalifa M.E. A new hybrid case-based reasoning approach for medical diagnosis system // Journal of Medical Systems. 2014. №. 38 (9). P. 8-19.
EI-Sappagh SH, EI-Masri S, Elmogy M. [etc.]. An ontological case base engineering methodology for diabetes management // Journal of Medical Systems. 2014. №. 38(8). P. 66-80.