Comparison ML-and MM- estimates fixed duration of the dead time MAP-flow of events | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2015. № 4(33).

Comparison ML-and MM- estimates fixed duration of the dead time MAP-flow of events

The Markovian arrival process (MAP-flow) with the intensity representing a piecewise-constant random process X(t) with two states is considered: X(t) = X 1 or X(t) = X 2 (X 1 > X 2). The dwell time of the process X(t) in the i-th state is random variable with exponential distribution function Fj = 1 - e , i = 1, 2. At the moment of termination of the i-th state of the process X(t) the following situations are possible, each of which proceeds instantly: 1) process X(t) transits from the i-th state to the i-th state, and an event of flow in the i-th state occurs; the joint probability of this situation is P(X i ^ X, ,1) = Pj (X г- | X i) i = 1, 2; 2) process X(t) transits from the i-th state to the j-th state, and an event of the flow occurs; the joint probability of the situation is P(X i ^ X j ,1) = Pj(X j | X i), i, j = 1, 2; i Ф j; 3) process X(t) transits from the i-th state to the j-th state, and no event of the flow occurs; the joint probability of the situation is P(X i ^ X ; ,0) = P0(X j | X i), i, j = 1,2; i Ф j. Thus, Pj (X , | X ,) + P,(X ; | X, ) + P0(X ; | X, ) = 1, i, j = 1, 2; i Ф ]' X1 1 0 2 X1 = ||D 0 | D Ц. 1 1 1 1 1 1 2 1 2 0 1 2 2 2 1 1 2 2 1 2 2 The elements of the matrix D1 are intensities of transitions from state with occurrence of an event. Non-diagonal elements of the matrix D0 are the intensities of transitions from state to state, but no event occurs. Diagonal elements of the matrix D0 are the intensities of the exit of the process X(t) from the states taken with the opposite sign. Under these assumptions, X(t) is the hidden Markov process. A comparison of the estimates of fixed dead time obtained (observations obtained as a result of a simulation model of the flow of events MAP) by the method of maximum likelihood and the method of moments. D =

Download file
Counter downloads: 252

Keywords

MAP-поток, непродлевающееся мертвое время, метод максимального правдоподобия, оценка максимального правдоподобия, метод моментов, оценка метода моментов, MAP-flow fixed dead time, the method of maximum likelihood, maximum likelihood estimation, method of moments, the evaluation method of moments

Authors

NameOrganizationE-mail
Gortzev Alexandr M.Tomsk State Universitygam@mail.fpmk.tsu.ru
Solovev Alexandr A.Tomsk State Universitysizal19@mail.ru
Всего: 2

References

Gortsev A.M. and Solov'ev A.A. Joint Probability Density of Interarrival Interval of a Flow of Physical Events with Unextendable Dead Time Period // Russian Physics Journal. 2014. V. 57, No. 7. P. 973-983.
Gortsev A.M., Nezhelskaya L.A., Soloviev A.A. Optimal State Estimation in MAP Event Flows with Unextendable Dead Time // Automation and Remote Control. 2012. V. 73, No. 8. P. 1316-1326.
Горцев А.М., Ниссенбаум О.В. Оценивание длительности мёртвого времени и параметров асинхронного альтернирующего потока событий с инициированием лишнего события // Вестник Томского государственного университета. 2004. № 284. С. 137-145.
Gortsev A.M., Nezhel'skaya L.A. Estimation of the dead time period and intensities of the synchronous double stochastic event flow // Radiotekhnika. 2004. No. 10. P. 8-16.
Vasil'eva L.A., Gortsev A.M. Estimation of the dead time of an asynchronous double stochastic flow of events under incomplete ob servability // Automation and Remote Control. 2003. V. 64, No. 12. P. 1890-1898.
Gortsev A.M., Nezhel'skaya L.A. Estimation of the dead-time period and parameters of a semi-synchronous double-stochastic stream of events // Measurement Techniques. 2003. V. 46, No. 6. P. 536-545.
Gortsev A.M., Parshina M.E. Estimation of parameters of an alternate stream of events in "dead" time conditions // Russian Physics Journal. 1999. V. 42, No. 4. P. 373-378.
Gortsev A.M., Klimov I.S. Estimation of the non-observability period and intensity of Poisson event flow // Radiotekhnika. 1996. No. 2. P. 8-11.
Gortsev A.M., Klimov I.S. An estimate for intensity of Poisson flow of events under the condition of its partial missing // Radio tekhnika. 1991. No. 12. P. 3-7.
Горцев А.М., Назаров А.А., Терпугов А.Ф. Управление и адаптация в системах массового обслуживания. Томск : Изд-во Том. ун-та, 1978. 208 с.
Bushlanov I.V., Gortsev A.V. Optimal estimation of the states of a synchronous double stochastic flow of events // Automation and Remote Control. 2004. V. 65, No. 9. P. 1389-1399.
Bushlanov I. V., Gortsev A. V. Optimal estimation of the states of a synchronous double stochastic flow of events // Avtomatika i Telemekhanika. 2004. No. 9. P. 40-51.
Gortsev A.M., Shmyrin I.S. Optimal estimation of states of a double stochastic flow of events in the presence of measurement errors of time instants // Automation and Remote Control. 1999. V. 60, Part 1. P. 41-51.
Gortsev A.M., Nezhel'skaya L.A., Shevchenko T.I. Estimation of the states of an MC-stream of events in the presence of measurement errors // Russian Physics Journal. 1993. V. 36, No. 12. P. 1153-1167.
Gortsev A.M., Nezhelskaya L.A. An asynchronous double stochastic flow with initiation of superfluous events // Discrete Mathematics and Applications. 2011. V. 21, No. 3. 2011. P. 283-290.
Bushlanov I.V., Gortsev A.M., Nezhel'skaya L.A. Estimating parameters of the synchronous twofold-stochastic flow of events // Automation and Remote Control. 2008. V. 69, No. 9. P. 1517-1533.
Vasil'eva L.A., Gortsev A.M. Dead-time interval estimation of incompletely observable asynchronous bistochastic flow of events // Avtomatika i Telemekhanika. 2003. No. 12. P. 69-79.
Vasil'eva L.A., Gortsev A.M. Parameter estimation of a doubly stochastic flow of events under incomplete observability // Avtomatika i Telemekhanika. 2002. No. 3. P. 179-184.
Vasil'eva L.A., Gortsev A.M. Estimation of parameters of a double-stochastic flow of events under conditions of its incomplete observability // Automation and Remote Control. 2002. V. 63, No. 3. P. 511-515.
Gortsev A.M., Shmyrin I.S. Optimal estimate of the parameters of a twice stochastic poisson stream of events with errors in measuring times the events occur // Russian Physics Journal. 1999. V. 42, No. 4. P. 385-393.
Gortsev A.M., Nezhel'skaya L.A. Estimate of parameters of synchronously alternating Poisson stream of events by the moment method // Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika). 1996. V. 50, No. 1. P. 56-63.
Gortsev A.M., Nezhel'skaya L.A. Estimation of the parameters of a synchro-alternating Poisson event flow by the method of moments // Radiotekhnika. 1995. V. 40, No. 7-8. P. 6-10.
Gortsev A.M., Klimov I.S. Estimation of the parameters of an alternating Poisson stream of events // Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika). 1993. V. 48, No. 10. P. 40-45.
Gortsev A.M., Klimov I.S. Estimation of intensity of Poisson stream of events for conditions under which it is partially unobservable // Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika). 1992. V. 47, No. 1. P. 33-38.
Апанасович В.В., Коляда А.А., Чернявский А.Ф. Статистический анализ случайных потоков в физическом эксперименте. Минск : Университетское, 1988. 254 с.
Горцев А.М., Калягин А.А., Нежельская Л.А. Оценка максимального правдоподобия длительности мёртвого времени в обобщённом полусинхронном потоке // Вестник ТГУ. Управление, вычислительная техника и информатика. 2015. № 1 (30). С. 27-37.
Горцев А.М., Леонова М.А., Нежельская Л.А. Сравнение МП- и ММ-оценок длительности мёртвого времени в обобщенном асинхронном потоке событий // Вестник ТГУ. Управление, вычислительная техника и информатика. 2013. № 4 (25). С. 32-42.
Леонова М.А., Нежельская Л.А. Оценка максимального правдоподобия длительности мертвого времени в обобщенном асинхронном потоке событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2013. № 2(23). С. 54-63.
Шуленин В.П. Математическая статистика. Томск: Изд-во НТЛ, 2012. Ч. 1. 540 с.
 Comparison ML-and MM- estimates fixed duration of the dead time MAP-flow of events | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2015. № 4(33).

Comparison ML-and MM- estimates fixed duration of the dead time MAP-flow of events | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2015. № 4(33).

Download full-text version
Counter downloads: 848