Locally-optimal control of discrete delayed control systems with incomplete information about state and perturbations | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2016. № 1(34).

Locally-optimal control of discrete delayed control systems with incomplete information about state and perturbations

Model of object with delayed control is described by equation x(k +1) = Ax(k) + Bu(k - h) + Fs(k), x(0) = x0, u(j) = \\i(j), j = -h,-h +1,...,-1, where x(k) e R is the state vector, u(k -h) e R is the control vector, h is the time delay, s(k) e R is the perturbation vector, x0 and \(j) (j = -h,-h + 1,...,-1) are initial vector and initial function, А, В, and F are constant matrices. It is assumed that the observable vector wx (k) e R, and wx (k) = Hxx(k) + xx (k), where Hx is the matrix of channel of observations, xx (k) is the Gaussian random sequence. The perturbation model contains unknown parameters and is determined by the equation s(k +1) = (R(k) + IR(k))s(k) + f (k) + if (k) + q(k), s(0) = s0, where R(k) is the known matrix, f(k) is the known vector, IR(k) and if (k) are some unknown matrix and vector, s0 is the random vector of initial conditions independent of q(k), x(k) and xx (k); q(k), x(k), xx (k) are independent Gaussian random sequences with the known characteristics. Indirect observations of the vector perturbations are described by the model 0 and D = D > 0 are weight matrices, z(k) e R is the tracking vector. The control is realized on the base of the Kalman filtering and extrapolation with considering the unknown input.

Download file
Counter downloads: 326

Keywords

дискретные системы, локальный критерий, запаздывание по управлению, неполная информация, discrete system, local criteria, delayed control, incomplete information

Authors

NameOrganizationE-mail
Kim Konstantin S.Tomsk State Universitykks93@rambler.ru
Smagin Valery I.Tomsk State Universityvsm@mail.tsu.ru
Всего: 2

References

Дегтярев Г. Л., Ризаев И.С. Синтез локально-оптимальных алгоритмов управления летательными аппаратами. М. : Машино строение, 1991. 304 с.
Mohammad S., Modarres S., Karbassi S.M. Time-optimal control of discrete-time linear systems with state and input time-delays // Int. Journal of Innovative Computing, Information and Control. 2009. Vol. 5, No. 9. P. 2619-2625.
Tehrani H.A., Ramroodi N. Eigenvalue assignment of discrete-time linear systems with state and input time-delays // AIJ-MISC. 2013. Vol. 45, No. 2. P. 23-30.
Киселева М.Ю., Смагин В.И. Управление с прогнозирующей моделью с учетом запаздывания по управлению // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 2 (11). С. 5-12.
Смагин В.И., Смагин С.В. Адаптивное управление запасами с учетом ограничений и транспортных запаздываний // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2008. № 3 (4). C. 19-26.
Пыркин А.А. Адаптивный алгоритм компенсации параметрически неопределенного смещенного гармонического возмуще ния для линейного объекта с запаздыванием в канале управления // Автоматика и телемеханика. 2010. № 8. С. 62-78.
Kiseleva M.Yu., Smagin V.I. Model predictive control for linear discrete-time systems with time delays and unknown input // Com munications in Computer and Information Science (CCIS-487). Springer International Publishing Switzerland, 2014. P. 181-188.
Janczak D., Grishin Yu. State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming // Control and Cybernetics. 2006. No. 4. P. 851-862.
Hsieh C.-S. On the optimality of two-stage Kalman filtering for systems with unknown inputs // Asian Journal of Control. 2010. No. 4. P. 510-523.
Witczak M. Fault diagnosis and fault-tolerant control strategies for non-linear systems. Chapter 2. Unknown input observers and filters // Lecture Notes in Electrical Engineering. Springer International Publishing, Switzerland, 2014. P. 19-56.
Смагин В.И., Смагин С.В. Фильтрация в линейных дискретных нестационарных системах с неизвестными возмущениями // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2011. № 3 (16). С. 43-51.
Смагин В.И. Оценивание состояний нестационарных дискретных систем при неизвестном входе с использованием компенсаций // Изв. вузов. Физика. 2015. Т. 58, № 7. С. 122-127.
 Locally-optimal control of discrete delayed control systems with incomplete information about state and perturbations | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2016. № 1(34).

Locally-optimal control of discrete delayed control systems with incomplete information about state and perturbations | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2016. № 1(34).

Download full-text version
Counter downloads: 800