Predictive control strategies for investment portfolio subject to constraints and trading costs | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2016. № 2(35).

Predictive control strategies for investment portfolio subject to constraints and trading costs

Consider an investment portfolio consisting of n risky assets and one risk-free asset (e.g., a bank account or a government bond). Let ut (k) , (i = 1, n) denote the amount of money invested in the i-th asset at time k ; u0(k) > 0 is the amount invested in a risk-free asset. Investor also can borrow the capital in case of need. The volume of the borrowing of the risk-free asset is equal to un+1(k) > 0. If u (k) < 0,(i = 1,n), then we use short position with the amount of shorting |ui (k)|. Let ri (k +1) denote the (simple) return of the i -th risky asset per period [k, k +1]. It is a stochastic unobservable at time k . By considering the self-finance strategies, the wealth process at the time k + 1 is given by V (k +1) = [1 + rJV (k) + i [r i (k +1) - rJu (k) - [r2 - rju„+1 (k), i=1 where r1 is the riskless lending rate, r2 is the riskless borrowing rate, r1 < r2 . We impose the following constraints on the decision variables (a borrowing limit on the total wealth invested in the risky assets, and long- and short-sale restrictions on all risky assets): ur(k) < u (k) < u,(k)(i = Щ), (1) 0 < V(k) - iu (k) + un+1(k) < ur, (2) i=1 0 n+l(k) 0 is a given parameter representing the growth factor and the initial state is V (0) = V(0) . We use the model predictive control methodology in order to design feedback predictive control strategies for optimal dynamic allocation of a portfolio. We define the following objective with receding horizon (risk function) which is to be minimized at each time k : m J(k + m / k) = E{i [V(k + i / k) - V(k + i)] / V(k), r(k),..., r(k - N)} + i=1 m-1 +Ei {[u(k + i / k) - (I + Q[r(k + i)])u(k + i - 1/ k)]R(k, i) x i =0 x[u (k + i / k) - (I + Q[r(k + i)])u (k + i - 1/ k)]/ V (k), r(k),..., r(k - N +1)}, over the sequence of predictive control inputs u (k / k), u (k +1/ k),..., u (k + m - 1/ k) dependent on the portfolio wealth and the market information at the current time k , under constraints (1)-(3), where m is the prediction horizon. The first term represents the conditional mean-square error between the investment portfolio value and a reference (benchmark) portfolio, the second term penalizes for transaction costs associated with trading amount. At the time k , u (k) = u (k / k) is assumed to be control u (k) . To obtain the control at the next step k + 1, the procedure is repeated, and the control horizon is one step shifted. Our approach is direct in that it uses directly the observed historical data to construct an adaptive algorithm for online portfolio selection. The main features of our approach are (a) the ability to adapt to non-stationary market environments by dynamically incorporating new information into the decision process; (b) no stochastic assumptions are needed regarding the stock prices, and (c) the flexibility of dealing with portfolio constraints. We also present the numerical modeling results based on currency pairs traded on the international currency market FOREX that give evidence of capacity and effectiveness of proposed approach.

Download file
Counter downloads: 252

Keywords

инвестиционный портфель, управление с прогнозирующей моделью, валютные пары, тран-закционные издержки, investment portfolio, model predictive control, transaction costs, currency pairs

Authors

NameOrganizationE-mail
Dombrovskii Vladimir V.Tomsk State Universitydombrovs@ef.tsu.ru
Larina Tatyana M.Tomsk State Universitylatami@mail.ru
Всего: 2

References

Шарп У.Ф., Александер Г.Дж., Бейли Д.В. Инвестиции. М. : Инфра-М, 1997. 1028 с.
Markowitz H. Portfolio Selection // Journal of Finance. 1952. Vol. 7, No. 1. P. 77-91.
Tobin J. Liquidity preference as behavior towards risk // Review of Economic Studies. 1958. Vol. 25, No. 2. P. 65-86.
Tobin J. The theory of portfolio selection. N. Y. : Macmillan, 1965.
Merton R.C. Continuous-time finance. Cambridge : Blackwell, 1990.
Домбровский В.В., Домбровский Д.В., Ляшенко Е.А. Управление с прогнозирующей моделью системами со случайными зависимыми параметрами при ограничениях и применение к оптимизации инвестиционного портфеля // Автоматика и телемеханика. 2006. № 12. С. 71-85.
Dombrovskii V.V., Obyedko T.Y. Portfolio Optimization in the Financial Market with Correlated Returns under Constraints, Transaction Costs and Different Rates for Borrowing and Lending // Electronic copy Available at SSRN. URL: http://ssrn.com/abstract=2516364
Домбровский Д.В. Динамические модели управления инвестиционным портфелем на нестационарном финансовом рынке с учетом транзакционных издержек и ограничений : дис.. канд. физ.-мат. наук. Томск, 2008. 188 с.
Dombrovskii V.V. Adaptive data-driven portfolio optimization in the non stationary financial market under constraints // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2013. № 3 (24). С. 5-13.
Dombrovskii V.V., Obyedko T.Y. Model predictive control for constrained systems with serially correlated stochastic parameters and portfolio optimization // Automatica. 2015. No. 54. Р. 325-331.
 Predictive control strategies for investment portfolio subject to constraints and trading costs | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2016. № 2(35).

Predictive control strategies for investment portfolio subject to constraints and trading costs | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2016. № 2(35).

Download full-text version
Counter downloads: 904