Maximum likelihood estimation of unextendable dead time period duration in the modulated semi-synchronous generalized flow of events | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2016. № 2(35).

Maximum likelihood estimation of unextendable dead time period duration in the modulated semi-synchronous generalized flow of events

In this paper we consider the modulated semi-synchronous generalized flow of events, which is one of the mathematical models for incoming streams of events in computer communication networks and which is related to the class of doubly stochastic Poisson processes (DSPPs). The flow intensity process is a piecewise constant stationary random process Я(/) with two states 1, 2 (first, second correspondingly). In the first state Я(/) = Я1 and in the second state Я(/) = Я212 > 0 ). During the time interval of a random duration when the process Я(/) is in state Яг- (Я(/) = Яг- ), a Poisson flow of events with intensity Яг-, i = 1,2, arrives. The transition of the process ) from the first state to the second state is possible at any moment of a Poisson event occurrence in state 1 of the process h(t) , herewith the process %(t) can change its state to the second one with probability p (0 < p < 1) or continue to stay in state 1 with complementary probability 1 - p . The transition of the process Я(^) from state 1 to state 2 is also possible at any moment that does not coincide with the moment of a Poisson event occurrence, herewith the duration of the process Я(^) staying in the first state is distributed according to the exponential law with parameter P : F(x) = 1 - e, x > 0 . Then the duration of the process Я(^) staying in the first state is distributed according to the exponential law with distribution function F1(t) = 1 - e' +, т> 0 . The transition of the process X(t) from the second state to the first state at the moment of a Poisson event occurrence in state 2 is impossible and can be done only at a random time moment. In this case the duration of the process X(t) staying in state 2 is distributed according to the exponential law with parameter а : F2 (т) = 1 - е, т> 0 . At the moment when the state changes from the second to the first one, an additional event is assumed to be initiated with probability 5 (0 < 5 < 1) . The registration of the flow events is considered in conditions of a constant (unextendable) dead time. The dead time period of a constant duration T begins after every registered at the moment tk , k > 1, event. During this period no other events are observed. When the dead time period is over, the first coming event causes the next interval of a dead time of duration T and so on. This paper contains analytical results that are devoted to finding the maximum likelihood estimate T of the dead time period duration on monitoring the time moments of the events occurrence. We assume that the flow parameters Xj >X2 > 0, 0 < p < 1, Р> 0, а> 0, 0 < 5 < 1 are known and the duration of the dead time period T is not known. According to the maximum-likelihood technique the likelihood function L(T | т,...,x) is maximized and the following task of optimization is solved: L(T | т,..., x) = J\pT (j ^ max, 0 < T <тшт, тшт > 0, j=1 where pT (тj-) is the one-dimensional probability density function of the interval length between two consecutive flow events. Finally, we obtain that the likelihood function L (T |т,..., тk > ) reaches its global maximum at the point T = т min, where xmin = min xk (k = 1 , n ); %k = tk+1 tk , Tk > 0 , k - 1, n - the sequence of the values of the intervals lengths between consecutive flow events measured during the interval of observation (0, t ], i.e. the solution of optimization problem is the estimate of the dead time period dura T = шШ .

Download file
Counter downloads: 270

Keywords

модулированный обобщенный полусинхронный поток событий, дважды стохастический поток событий (DSPP), MAP (Markovian Arrival Process)-поток событий, непродлевающееся мертвое время, функция правдоподобия, оценка максимального правдоподобия, длительность мертвого времени, modulated semi-synchronous generalized flow of events, doubly stochastic Poisson process (DSPP), Markovian arrival process (MAP), maximum likelihood estimation, likelihood function, dead time period duration

Authors

NameOrganizationE-mail
Bakholdina Maria A.Tomsk State Universitymaria.bakholdina@gmail.com
Gortsev Alexander M.Tomsk State Universitygam@fpmk.tsu.ru
Всего: 2

References

Cox D.R. Some Statistical Methods Connected with Series of Events // J. Royal Statistical Society B. 1955. V. 17. P. 129-164.
Kingman Y.F.C. On doubly stochastic Poisson process // Proceedings of Cambridge Phylosophical Society. 1964. V. 60, No 4. P. 923-930.
Basharin G.P., Kokotushkin V.A., Naumov V.A. Method of equivalent substitutions for calculating fragments of communication networks for digital computer // Engineering cybernetics. 1979. V. 17(6). P. 66-73.
Башарин Г.П., Кокотушкин В.А., Наумов В.А. О методе эквивалентных замен расчета фрагментов сетей связи // Известия АН СССР. Техн. кибернетика. 1980. № 1. С. 55-61.
Neuts M.F. A versatile Markov point process // Journal of Applied Probability. 1979. V. 16. P. 764-779.
Cox D. R., Isham V. Point Processes. London : Chapman & Hall, 1980.
Bremaud P. Point Processes and Queues: Martingale Dynamics. N.Y. : Springer-Verlag, 1981.
Last G., Brandt A. Marked Point Process on the Real Line: The Dynamic Approach. N.Y. : Springer-Verlag, 1995.
Gortsev A.M., Nezhelskaya L.A. An asynchronous double stochastic flow with initiation of superfluous events // Discrete Mathemat ics and Applications. 2011. V. 21, No. 3. P. 283-290.
Башарин Г.П., Гайдамака Ю.В., Самуйлов К.Е. Математическая теория телетрафика и ее приложения к анализу мультисер-висных сетей связи следующих поколений // Автоматика и вычислительная техника. 2013. № 2. С. 11-21.
Adamu A., Gaidamaka Y., Samuylov A. Discrete Markov Chain Model for Analyzing Probability Measures of P2P Streaming Network // Lecture Notes in Computer Science: Proc. of the 11-th International Conference on Next Generation Wired/Wireless Networking NEW2AN-2011 (August 23-25, 2011, St. Petersburg, Russia). 2011. P. 428-439.
Bouzas P.R., Valderrama M.J., Aguilera A.M., Ruiz-Fuentes N. Modelling the mean of a doubly stochastic Poisson process by functional data analysis // Computational Statistics and Data Analysis. 2006. V. 50(10). P. 2655-2667.
Centanni S., Minozzo M. A Monte Carlo approach to filtering for a class of marked doubly stochastic Poisson processes // Journal of the American Statistical Association. 2006. V. 101. P. 1582-1597.
Dubois J.-P. Traffic estimation in wireless networks using filtered doubly stochastic point processes (Conference Paper) // Proceedings - 2004 International Conference on Electrical, Electronic and Computer Engineering, ICEEC'04 2004. 2004. P. 116-119
Hossain M.M., Lawson A.B. Approximate methods in Bayesian point process spatial models // Computational Statistics and Data Analysis. 2009. V. 53(8). P. 2831-2842
Snyder D.L., Miller M.I. Random Point Processes in Time and Space. Springer-Verlag, Heidelberg, 1991
Горцев А.М., Нежельская Л. А., Шевченко Т.И. Оценивание состояний MC-потока событий при наличии ошибок измерений // Известия вузов. Физика. 1993. № 12. С. 67-85
Gortsev A.M., Shmyrin I.S. Optimal estimation of states of a double stochastic flow of events in the presence of measurement errors of time instants // Automation and Remote Control. 1999. V. 60, No. 1. P. 41-51
Горцев А.М., Шмырин И.С. Оптимальная оценка состояний дважды стохастического потока событий при наличии ошибок в измерениях моментов времени // Автоматика и телемеханика. 1999. № 1. С. 52-66
Горцев А.М., Ниссенбаум О.В. Оптимальная оценка состояний асинхронного альтернирующего потока с инициированием лишних событий // Вестник ТюмГУ. 2008. № 6. С. 107-119
Горцев А.М., Зуевич В. Л. Оптимальная оценка состояний асинхронного дважды стохастического потока событий с произвольным числом состояний // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 2(11). С. 44-65
Горцев А. М., Леонова М. А. Оптимальная оценка состояний обобщенного асинхронного дважды стохастического потока // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 1(10). С. 33-47
Gortsev A.M., Nezhelskaya L.A., Solovev A.A. Optimal State Estimation in MAP Event Flows with Unextendable Dead Time // Automation and Remote Control. 2012. V. 73, No. 8. P. 1316-1326
Бахолдина М.А. Оптимальная оценка состояний модулированного обобщенного полусинхронного потока событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2013. № 2(23). С. 10-21
Бахолдина М. А., Горцев А. М. Оптимальная оценка состояний модулированного обобщенного полусинхронного потока событий при непродлевающемся мертвом времени // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2014. № 1(26). С. 13-24
Bakholdina M.A., Gortsev A.M. Optimal estimation of the states of modulated semi-synchronous integrated flow of events in condition of its incomplete observability // Applied Mathematical Sciences. 2015. V. 9, No. 29. P. 1433-1451
Горцев А.М., Завгородняя М.Е. Оценка параметров альтернирующего потока событий при условии его частичной наблюдаемости // Оптика атмосферы и океана. 1997. Т. 10. № 3. С. 273-280
Васильева Л. А., Горцев А.М. Оценивание параметров дважды стохастического потока событий в условиях его неполной наблюдаемости // Автоматика и телемеханика. 2002. № 3. С 179-184
Горцев А.М., Нежельская Л.А. Оценивание длительности «мертвого времени» и интенсивностей синхронного дважды стохастического потока событий // Радиотехника. 2004. № 10. С. 8-16
Горцев А. М., Ниссенбаум О. В. Оценивание длительности мертвого времени и параметров асинхронного альтернирующего потока событий с инициированием лишнего события // Вестник Томского государственного университета. 2004. № 284. С. 137-145
Горцев А.М., Зуевич В. Л. Оптимальная оценка параметров асинхронного дважды стохастического потока событий с произвольным числом состояний // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2011. № 4(17). С. 25-40
Леонова М. А., Нежельская Л. А. Оценка максимального правдоподобия длительности мертвого времени в обобщенном асинхронном потоке событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2013. № 2(23). С. 54-63
Горцев А. М., Соловьев А. А. Оценка максимального правдоподобия длительности непродлевающегося мертвого времени в потоке физических событий // Известия вузов. Физика. 2015. Т. 58, № 11. С. 141-149
Феллер В. Введение в теорию вероятностей и ее приложения. М. : Мир, 1967. Т. 1
Баруча-Рид А.Т. Элементы теории марковских процессов и их приложения. М. : Наука, 1969
Апанасович В.В., Коляда А.А., Чернявский А.Ф. Статистический анализ случайных потоков в физическом эксперименте. Минск : Университетское, 1988
Normey-Rico J.E. Control of dead-time processes. (Advanced textbooks in control and signal processing). London : Springer-Verlag, 2007
Горцев А. М., Климов И. С. Оценка интенсивности пуассоновского потока событий в условиях частичной его ненаблюдаемости // Радиотехника. 1991. № 12. С. 3-7
Горцев А. М., Климов И. С. Оценивание периода ненаблюдаемости и интенсивности пуассоновского потока событий // Радиотехника. 1996. № 2. С. 8-11
Горцев А.М., Паршина М.Е. Оценивание параметров альтернирующего потока событий в условиях «мертвого времени» // Известия вузов. Физика. 1999. № 4. С. 8-13
Горцев А. М., Ниссенбаум О. В. Оценивание длительности мертвого времени и параметров асинхронного альтернирующего потока событий при непродлевающемся мертвом времени // Известия вузов. Физика. 2005. № 10. С. 35-49
Gortsev A.M., Nissenbaum O.V. Estimation of the dead time period and parameters of an asynchronous alternative flow of events with unextendable dead time period. Russian Physics Journal. 2005. V. 48(10). Р. 1039-1054
Нежельская Л. А. Оптимальное оценивание состояний полусинхронного потока событий в условиях его частичной наблюдаемости // Вестник Томского государственного университета. 2000. № 269. С. 95-98
Горцев А.М., Нежельская Л.А. Оценивание параметров полусинхронного дважды стохастического потока событий методом моментов // Вестник Томского государственного университета. 2002. № 1. С. 18-23.
Gortsev A.M., Nezhelskaya L.A. Estimation of the dead-time period and parameters of a semi-synchronous double-stochastic stream of events // Measurement Techniques. 2003. V. 46, No. 6. P. 536-545.
Горцев А.М., Нежельская Л.А. Полусинхронный дважды стохастический поток событий при продлевающемся мертвом времени // Вычислительные технологии. 2008. Т. 13, № 1. С. 31-41.
Горцев А.М., Калягин А. А. Оптимальная оценка состояний обобщенного полусинхронного потока событий в условиях непродлевающегося мертвого времени // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 4(13). С. 50-60.
Горцев А.М., Калягин А.А., Нежельская Л.А. Совместная плотность вероятностей длительности интервалов обобщенного полусинхронного потока событий при непродлевающемся мертвом времени // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2014. № 2(27). С. 19-29.
Горцев А.М., Калягин А.А., Нежельская Л.А. Оценка максимального правдоподобия длительности мертвого времени в обобщенном полусинхронном потоке // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2015. № 1(30). С. 27-37.
Горцев А.М., Нежельская Л.А. О связи MC-потоков и MAP-потоков событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2011. № 1(14). С. 13-21.
Бахолдина М. А. Совместная плотность вероятностей длительности интервалов модулированного обобщенного полусинхронного потока событий при непродлевающемся мертвом времени и условия его рекуррентности // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2015. № 2(31). С. 4-17.
Bakholdina M., Gortsev A. Joint probability density of the intervals length of the modulated semi-synchronous integrated flow of events and its recurrence conditions // Communications in Computer and Information Science. 2014. V. 487. P. 18-25.
Бахолдина М. А., Горцев А. М. Совместная плотность вероятностей длительности интервалов модулированного обобщенного полусинхронного потока событий и условия его рекуррентности // Информационные технологии и математическое моделирование (ИТММ-2014): материалы XIII Междунар. науч.-практ. конф. им. А.Ф. Терпугова (20-22 ноября 2014 г.). Томск : Изд-во Том. ун-та, 2014. Ч. 2. С. 137-143.
Бахолдина М. А., Горцев А. М. Плотность вероятностей длительности интервала между соседними событиями модулированного обобщенного полусинхронного потока событий при непродлевающемся мертвом времени // Теория вероятностей, случайные процессы, математическая статистика и приложения: материалы Междунар. науч. конф., посвящ. 80-летию проф., д-ра физ.-мат. наук Г.А. Медведева, Минск, 23-26 фев. 2015 г. / редкол.: Н.Н. Труш [и др.]. Минск : РИВШ, 2015. С. 17-22.
Bakholdina M., Gortsev A. Joint probability density of the intervals length of modulated semi-synchronous integrated flow of events in conditions of a constant dead time and the flow recurrence conditions // Communications in Computer and Information Science. 2015. V. 564. P. 13-27.
 Maximum likelihood estimation of unextendable dead time period duration in the modulated semi-synchronous generalized flow of events | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2016. № 2(35).

Maximum likelihood estimation of unextendable dead time period duration in the modulated semi-synchronous generalized flow of events | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2016. № 2(35).

Download full-text version
Counter downloads: 903