Collective annuity estimation of joint-life status | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2016. № 2(35).

Collective annuity estimation of joint-life status

Consider the case of collective life insurance for which a useful abstraction is a status. Let m individuals of ages xm conclude an insurance contract. In accordance with the notation of actuarial mathematics, let the random variable X be lifetime, T(xk) = X - xk be residual lifetime of the k-th individual. We put in line to the set of m numbers T(x:),...,T(xm) the status U, which has its own lifetime T (U) . The joint-life status is denoted U := x: :...: xm and is considered to be destroyed if at least one of the individuals has died, i.e. T (U) = mm (T (x,),..., T (xm)). It is clear that P{T(U) > t} = P{mm(T(x,),...,T(xm)) > t} = P{T(x,) > t,...,T(xm) > t} = S^ (t)••• S^ (t), where Sx (t) = -(-) is the survival function of the random variable T(x). It is for this status, we define the present value of continu- S ( x) ous time life annuity. By analogy with the case of individual insurance, the annuity is expressed in terms of the net premium: j(( ^.xm ), x,..:xm 5 where 5 is the rate of interest, the net premium A : :x is expressed by the formula 4,„xm =Jefx,...:xm (t)dt, 0 in which the distribution density of the joint-life status is defined as m U, m (t) = X Sxi(t )-fx, (t )• Sxm (t). i=1 Here fx (t) is the distribution density of the random variable T(x). The paper deals with the problem of finding numerical values for functionals of annuities for the join-life status of two persons for a number of parameterized distributions of actuarial mathematics. Also, the corresponding estimates of annuities for the join-life status of two persons are found.

Download file
Counter downloads: 259

Keywords

коллективное страхование жизни, рента статуса совместной жизни, параметрические оценки, collective life insurance, joint-life status, survival function, parametric estimate

Authors

NameOrganizationE-mail
Gubina Oxana V.Tomsk State Universitygov7@mail.ru
Koshkin Gennady M.Tomsk State Universitykgm@mail.tsu.ru
Всего: 2

References

Bowers N.L., Gerber H.U., Hickman J.C., Jones D.A., Nesbitt C.J. Actuarial Mathematics. Society of Actuaries, Itasca, III, 1986. 624 p.
Гербер Х. Математика страхования жизни. М. : Мир, 1995. 156 с.
Кошкин Г.М. Введение в математику страхования жизни. Томск : ТГУ, 2004. 112 с.
Кошкин Г.М., Лопухин Я.Н. Оценивание нетто-премий в моделях долгосрочного страхования жизни // Обозрение приклад ной и промышленной математики. 2003. Т. 10, вып. 2. С. 315-330.
Koshkin G., Lopukhin Y. Nonparametric Estimation of Net Premium Functionals for Different Statuses in Collective Life Insurance // Communications in Computer and Information Science. 2014. Vol. 487. P. 223-233.
Фалин Г.И. Математические основы теории страхования жизни и пенсионных схем. М. : Анкил, 2002. 262 с.
Губина О.В., Кошкин Г.М. Оценивание современной стоимости непрерывной n-летней временной пожизненной ренты // Известия вузов. Физика. 2015. Т. 58, № 11/2. С. 235-241.
Koshkin G.M., Gubina O.V. Estimation of the Present Values of Life Annuities for the Different Actuarial Models // Proceedings of The Second International Symposium on Stochastic Models, in Reliability Engineering, Life Science, and Operations Management / Ilia Frenkel and Anatoly Lisnianski (Eds.). SMRLO 2016, February 15-18, 2016, Beer Sheva, Israel. Conference Publishing Services The Institute of Electrical and Electronics Engineers, Inc. 2016. P. 506-510.
 Collective annuity estimation of joint-life status | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2016. № 2(35).

Collective annuity estimation of joint-life status | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2016. № 2(35).

Download full-text version
Counter downloads: 904