Comparison of ML- and MM-estimations of period duration of dead time in modulated synchronous double stochastic flow of events
One considers the modulated synchronous twice stochastic flow of events, which rate is piecewise constant random process X(t) with two states: X1, X2 (X1 > X2 > 0) . The time when process X(t) is staying in i-state has exponential probability distribution function with the parameter ai, i = 1,2 . During the time random interval when X(t) = Xi, there is the Poisson flow with the rate Xi, i = 1,2 . A state transition of process X(t) occurs in the moment of the Poisson flow event arrival, moreover, the passing from the first to the second state is realized with probability p, the passing from the second to the first state is realized with probability q. The flow functions in conditions of dead time, which is one of the falsifying factors of state and parameter estimation of the flow. After each registered event, there is the time of fixed duration T (dead time), during which another flow events is inaccessible for observation. Now consider the nonextendable dead time, that is all events, which happen during dead time interval without its prolongation. At the end of the period duration of the dead time, the first happened event creates dead time period of duration T again and etc. Note that for the flow, which functions in dead time conditions, events are observable if they did not get into dead time interval (events which cause its approach). For the flow which functions in dead time absence all events are observable. One of confounding factor during the flow state and parameter estimation is dead time of recording device, which is generated by observable flow event occurrence. All other events occurred during the dead time interval are not accessible for observation. The main purpose of the research work is to obtain dead time period estimator T using the maximum likelihood method and method of moments (ML-estimators and MM-estimators respectively) and to compare these estimators. During the investigation it was obtained that ML-estimator of dead time period duration takes a value T = %m = min %k, k = 1, n . It means that the solution of optimization problem is the dead time estimate T = xm . Also, it was designed an algorithm of the single MM-estimator obtaining. On the base of these methods it was realized a computing program and it was made a statistical experiment during which for different values of input flow parameters 1, 2, P, q, T there was computed the values of ML-estimates TjMj and MM-estimates T, j = 1, N (N is a number of experiment steps). For the values obtained there are calculated the values of ^ N ^ ^ N ^ _ sample variances VMn = (1/N)^(T - T), TVMM = (1/N)^ ОмМ - T) , j = 1, N . Then it was chosen which of estimates is j=1 j=1 better: if VMn < VMM then ML-estimate is better than MM-estimate, otherwise MM-estimate is better than ML-estimate.
Keywords
модулированный синхронный поток событий,
непродлевающееся мертвое время,
МП-оценки,
ММ-оценки,
длительность мертвого времени,
modulated synchronous flow,
nonextendable dead time,
ML-estimation,
MM-estimation,
dead time durationAuthors
Sirotina Maria N. | Tomsk State University | mashuliagol@mail.ru |
Всего: 1
References
Сиротина М.Н. Оптимальная оценка состояний модулированного синхронного дважды стохастического потока событий в условиях непродлевающегося мертвого времени // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2014. № 1(26). C. 63-74.
Сиротина М.Н., Горцев А.М. Плотность вероятностей длительности интервала между соседними событиями в модулирован ном синхронном потоке при непродлевающемся мертвом времени // Материалы Международной научной конференции, посвященной 80-летию профессора, доктора физико-математических наук Геннадия Алексеевича Медведева. Белоруссия. Минск. 23-26 февраля 2015. Минск : Изд-во РИВШ, 2015. С. 299-304.
Сиротина М.Н. Совместная плотность вероятностей значений длительности интервалов между моментами наступления со седних событий в модулированном синхронном дважды стохастическом потоке при непродлевающемся мертвом времени и условия рекуррентности потока // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2015. № 2(31). C. 53-67.
Сиротина М.Н., Горцев А.М. Оценка максимального правдоподобия длительности мертвого времени в модулированном синхронном дважды стохастическом потоке событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2016. № 1(34). C. 50-64.
Дудин А.Н., Клименок В.Н. Системы массового обслуживания с коррелированными потоками. Минск : Изд-во БГУ, 2000. 175 с.
Башарин Г.П., Гайдамака Ю.В., Самуйлов К.Е. Математическая теория телетрафика и ее приложения к анализу мультисервисных сетей связи следующих поколений // Автоматика и вычислительная техника. 2013. № 2. С. 11-21.
Kingman J.F.C. On doubly stochastic Poisson process // Proceedings Cambridge Phylosophical Society. 1964. V. 60, No. 4. P. 923 930.
Башарин Г.П., Кокотушкин В.А., Наумов В.А. О методе эквивалентных замен расчета фрагментов сетей связи // Изв. АН СССР. Техн. кибернетика. 1979. № 6. С. 92-99.
Neuts M.F. A versatile Markov point process // Journal of Applied Probability. 1979. V. 16. P. 764-779.
Lucantoni D.M. New results on the single server queue with a batch markovian arrival process // Communication in Statistics Stochastic Models. 1991. V. 7. P. 1-46.
Lucantoni D.M., Neuts, M.F. Some steady-state distributions for the MAP/SM/1 queue // Communication in Statistics Stochastic Models. 1994. V. 10. P. 575-598.
Лившиц К.И., Бублик Я.С. Вероятность разорения страховой компании при дважды стохастическом потоке страховых выплат // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 1(10). С. 66-77.
Yang Y.W. Woo Shin. BMAP/G/1 queue with correlated arrivals of customers and disasters // Operation Research Letters. 2004. V. 32, Issue 4. P. 364-373.
Artalejo Jesus R., Chakravarthy Srinivas R. Computational analysis of the maximal queue length in the MAP/M/c retrival queue // Applied Mathematics and Computation. 2006. V. 183, Issue 2. P. 1399-1409.
Best J. Doubly Stochastic Processes: an Approach for Understanding Central Nervous System Activity // Selected Topics on Applied Mathematics, Circuits, Systems and Signals. WSEAS Press, 2009. P. 155-158.
Bushalnov I. V., Gortsev A.M., Nezhel'skaya L.A. Estimating parameters of the synchronous twofold-stochastic flow of events // Automation and Remote Control. 2008. V. 69, No. 9. P. 1517-1533.
Горцев А.М., Нежельская Л.А. Оценивание длительности «мертвого времени» и интенсивностей синхронного дважды стохастического потока событий // Радиотехника. 2004. №. 10. С. 8-16.
Василевская Т.П., Горцев А.М., Нежельская Л.А. Оценивание длительности мертвого времени и параметров синхронного альтернирующего потока с проявлением либо непроявлением событий // Вестник Томского государственного университета. 2004. № 9. С. 129-138.
Горцев А.М., Нежельская Л.А. Оценивание длительности мертвого времени и параметров синхронного альтернирующего потока событий // Вестник Томского государственного университета. 2003. № 6. С. 232-239.
Горцев А.М., Нежельская Л.А. Оцениваение параметров синхронного дважды стохастического потока событий методом моментов // Вестник Томского государственного университета. 2002. № 1. С. 24-29.
Горцев А. М., Нежельская Л. А. Оценка параметров синхронного альтернирующего пуассоновского потока событий методом моментов // Радиотехника. 1995. №. 7-8. С. 6-10.
Леонова М.А., Нежельская Л.А. Оценка максимального правдоподобия длительности мертвого времени в обобщенном асинхронном потоке событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2013. № 2 (23). С. 54-63.
Горцев А.М., Леонова М.А., Нежельская Л.А. Совместная плотность вероятностей длительности интервалов обобщенного асинхронного потока событий при непродлевающемся мертвом времени // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2012. № 4 (21). С. 14-25.
Леонова М.А., Нежельская Л.А. Вероятность ошибки при оценивании состояний обобщенного синхронного потока событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2012. № 2(19). С. 88-101.
Gortsev A.M., Nezhel'skaya L.A. An asynchronous double stochastic flow with initiation of superfluous events // Discrete Mathematics and Applications. 2011. V. 21, No. 3. P. 283-290.
Горцев А.М., Нежельская Л.А. Оценивание параметров асинхронного потока с инициированием лишних событий методом моментов // Вестник Томского государственного университета. 2006. № 18. С. 267-273.
Горцев А.М., Нежельская Л.А., Шевченко Т.И. Оценивание состояний MC-потока событий при наличии ошибок измерений // Известия высших учебных заведений. Физика. 1993. № 12. С. 67-85.
Калягин А.А., Нежельская Л.А. Оценка длительности мертвого времени в обобщенном полушнхронном потоке событий // Новые информационные технологии в исследовании сложных структур : материалы Десятой российской конференции с международным участием (9-13 июня 2014 г.). Томск : Издательский Дом Томского государственного университета, 2014. С. 96-97.
Горцев А.М., Калягин А.А., Нежельская Л.А. Оптимальная оценка состояний обобщенного полусинхронного потока событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 2(11). С. 66-81.
Горцев А. М., Нежельская Л. А. Полусинхронный дважды стохастический поток событий при продлевающемся мертвом времени // Вычислительные технологии. 2008. Т. 13, № 1. С. 31-41.
Gortsev A.M., Nezhel'skaya L.A. Estimation of the dead-time period and parameters of a semi-synchronous double-stochasic stream of events // Measurement Techniques. 2003. V. 46, No. 6. P. 536-545.
Горцев А. М., Нежельская Л. А. Оценивание параметров полусинхронного дважды стохастического потока событий методом моментов // Вестник Томского государственного университета. 2002. № 1. С. 18-23.
Нежельская Л. А. Оптимальное оценивание состояний полусинхронного потока событий в условиях его частичной наблюдаемости // Вестник Томского государственного университета. 2000. № 269. С. 95-98.
Горцев А.М., Нежельская Л.А. О связи MC-потоков и MAP-потоков событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2011. № 1(14). С. 13-21.
Gortsev A.M., Nezhel'skaya L.A., Solov'ev A.A. Optimal State Estimation in MAP Event Flows with Unextendable Died Time // Automation and Remote Control. 2012. V. 73, No. 8. P. 1316-1326.
Горцев А. М., Шмырин И. С. Оптимальная оценка состояний дважды стохастического потока событий при наличии ошибок в измерениях моментов времени // Автоматика и телемеханика. 1999. № 1. С. 52-66.
Горцев А.М., Леонова М.А. Оптимальная оценка состояний обобщенного асинхронного дважды стохастического потока // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 1. С. 33-47.
Горцев А.М., Зуевич В.Л. Оптимальная оценка состояний асинхронного дважды стохастического потока событий с произвольным числом состояний // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 2. С. 44-65.
Апанасович В.В., Коляда А.А., Чернявский А.Ф. Статистический анализ случайных потоков в физическом эксперименте. Минск : Университетское, 1988. 254 с.
Горцев А.М., Васильева Л.А. Оценивание параметров дважды стохастического потока событий в условиях его неполной наблюдаемости // Автоматика и телемеханика. 2002. № 3. С. 179-184.
Горцев А.М., Завгородняя М.Е. Оценка параметров альтернирующего потока событий при условии его частичной наблюдаемости // Оптика атмосферы и океана. 1997. Т. 10, № 3. С. 273-280.
Горцев А.М., Климов И.С. Оценка интенсивности пуассоновского потока событий в условиях частичной его ненаблюдаемости // Радиотехника. 1991. № 12. С. 3-7.
Горцев А.М., Паршина М.Е. Оценивание параметров альтернирующего потока событий в условиях «мертвого времени» // Известия высших учебных заведений. Физика. 1999. № 4. С. 8-13.
Горцев А.М., Ниссенбаум О.В. Оценивание длительности мертвого времени и параметров асинхронного альтернирующего потока событий при непродлевающемся мертвом времени // Известия высших учебных заведений. Физика. 2005. № 10. С. 35-40.
Горцев А. М., Ниссенбаум О. В. Оценивание длительности мертвого времени и параметров асинхронного альтернирующего потока событий с инициированием лишних событий // Вестник Томского государственного университета. 2004. № 284. С. 137-145.
Горцев А. М., Климов И. С. Оценивание периода ненаблюдаемости и интенсивности пуассоновского потока событий // Радиотехника. 1996. № 2. С. 8-11.
Gortsev A.M., Nezhel'skaya L.A. Estimate of parameters of synchronously alternating Poisson stream of events by the moment method // Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika). 1996. V. 50, No. 1. P. 56-63.
Нежельская Л.А. Оптимальная оценка состояний синхронного MC-потока событий // Избранные доклады международной конференции «Всесибирские чтения по математике и механике». Томск : Изд-во ТГУ, 1997. Т. 1. С. 97-102.
Gortsev A.M., Shmyrin I.S. Optimal estimation of the states of a double stochastic flow of events in the presence oof measurement errors of time instants // Automation and Remote Control. 1999. V. 60, No. 1. P. 41-51.
Горцев А.М., Шмырин И.С. Оптимальная оценка параметров дважды стохастического пуассоновского потока событий при наличии ошибок в измерениях моментов наступления событий // Известия высших учебных заведений. Физика. 1999. № 4. С. 19.
Горцев А. М., Нежельская Л. А. Синхронный дважды стохастический поток событий при продлевающемся мертвом времени // Теория вероятностей, случайные процессы, математическая статистика и приложения: материалы международной конференции. Минск : Изд-во БГУ, 2005. С. 60-69.
Бушланов И.В., Горцев А.М. Оптимальная оценка состояний синхронного дважды стохастического потока событий // Автоматика и телемеханика. 2004. № 9. С. 40-51.
Горцев А. М., Калягин А. А., Нежельская Л. А. Оценка максимального правдоподобия длительности мертвого времени в обобщенном полусинхронном потоке // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2015. № 1. С. 27-37.
Горцев А.М., Соловьев А.А. Совместная плотность вероятностей длительности интервалов потока физических событий при непродлевающемся мертвом времени // Известия высших учебных заведений. Физика. 2014. Т. 57, № 7. С. 103-111.
Горцев А. М., Леонова М. А., Нежельская Л. А. Сравнение МП- и ММ-оценок длительности мертвого времени в обобщенном асинхронном потоке событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2013. № 4 (25). С. 32-42.
Калягин А. А., Нежельская Л. А. Сравнение МП- и ММ-оценок длительности мертвого времени в обобщенном полусинхронном потоке событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2015. № 3(32). С. 23-32.
Горцев А. М., Калягин А. А., Нежельская Л. А. Совместная плотность вероятностей длительности интервалов обобщенного полусинхронного потока событий при непродлевающемся мертвом времени // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2014. № 2(27). С. 19-29.
Горцев А. М., Соловьев А. А. Оценка максимального правдоподобия длительности непродлевающегося мертвого времени в потоке физических событий // Известия высших учебных заведений. Физика. 2015. Т. 58, № 11. С. 141-149.
Горцев А. М., Соловьев А. А. Сравнение МП- и ММ-оценок длительности непродлевающегося мертвого времени в MAP-потоке событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2015. № 4. С. 13-22.