The asymptotic properties of the modified estimators of Gini's mean differences | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2016. № 4(37). DOI: 10.17223/19988605/37/8

The asymptotic properties of the modified estimators of Gini's mean differences

The paper proposes a modified estimator Gini's mean difference, which is part of a class U-statistics based on the trimmed samples. It is shown that this estimate is asymptotically normal, has a limited influence function, it has a high efficiency for a normal distribution of observations. We assume that X1,...,Xn a random sample from a distribution function F(x) and we assume that has a density f (x) , x e R, X(),...,X(n) - ordered statistics of the original sampleX^...,Xn . Let T(F) , F e 5 common functional that characterizes the scale parameter, which describes the degree of dispersion of the study of a random variable X . We consider the functional which is defined as 1 F (1-a) Aa(F)= 2 J Jx - y\dF (x)dF (y), 0 a -estimators with other estimates of the scale parameter for Gaussian model with s -fixed proportion of contamination, and proposed an adaptive version A a -estimators for which the parameter a characterizing the proportion of "trimmed" of the original sample, selected on the basis of information contained in the original sample using a sample estimate functional, characterizing the degree of "heavy tails" of the distribution function of the random variable X under study.

Download file
Counter downloads: 229

Keywords

масштабный параметр, робастные оценки, функция влияния, средняя разность Джини, U-статистики, адаптивные оценки, scale parameter, robust estimation, influence function, asymptotic relative efficiency, adaptive estimators

Authors

NameOrganizationE-mail
Shulenin Valery P.Tomsk State Universityshvp@fpmk.tsu.ru
Всего: 1

References

Hoefding W. A class of statistics with asymptotically normal distribution //Ann. Math. Statist. 1948. V. 19. P. 292-325.
Janssen P., Serfling R., Veraverbeke M. Asymptotic normality of U-statistics based on trimmed samples // J. Statist. Planning and Inference. 1987. V. 16. P. 63-74.
Serfling R.J. Approximation Theorems of Mathematical Statistics. N. Y. : Wiley, 1980. 371 p.
Хампель Ф., Рончетти Э., Рауссей П., Штаэль В. Робастность в статистике. Подход на основе функций влияния. М. : Мир, 1989. 512 с.
Шуленин В.П. Введение в робастную статистику. Томск : Изд-во Том. ун-та, 1993. 227 с.
Шуленин В.П. Математическая статистика. Ч. 3: Робастная статистика : учеб. Томск : Изд-во НТЛ, 2012. 520 с.
Кендэлл М., Стьюарт А. Теория распределений. М. : Наука, 1966. 587 с.
Шуленин В.П. Исследование устойчивости и асимптотических свойств урезанной средней разности Джини // Тр. IV Между народной конференции по теории вероятности и математической статистике. Вильнюс, 1985. C. 330-332.
Шуленин В.П. Асимптотические свойства GL и U-статистик // Вестник Томского государственного университета. Приложе ние. 2004. № 9 (11). C. 184-190.
Bickel P.J., Lehmann E.L. Descriptive statistics for nonparametric models. III. Dispersion // Ann. Statist. 1976. V. 4, No. 6. P.1139-1158.
Ramberg J.S., Schmeiser B.W. An approximative method for generating symmetric random variables // Commun ACM. 1972. V. 15. P. 987-990.
Andrews D.F., Bickel P.J., Hampel F.R., Huber P. J., Rogers W.H., Tukey J.W. Robust estimation of location: survey and advances. N. Y. : Princeton Univ. Press, 1972. 375 p.
Hogg R.V. Adaptive robust procedures: A partial review and some suggestions for future applications and theory // J. Amer. Statist. Assoc. 1974. V. 69. P. 909-923.
Шуленин В.П. Адаптивная оценка урезанной средней разности Джини // Методы и программное обеспечение обработки информации и прикладного статистического анализа данных на ЭВМ. Минск, 1985. C. 113-114.
 The asymptotic properties of the modified estimators of Gini's mean differences | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2016. № 4(37). DOI: 10.17223/19988605/37/8

The asymptotic properties of the modified estimators of Gini's mean differences | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2016. № 4(37). DOI: 10.17223/19988605/37/8

Download full-text version
Counter downloads: 812