Adaptive prediction of stochastic differential equations with unknown parameters | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2017. № 38. DOI: 10.17223/19988605/38/3

Adaptive prediction of stochastic differential equations with unknown parameters

This paper proposes adaptive predictors of continuous-time dynamic systems with unknown parameters. Predictors are based on the truncated parameter estimators. In particular, there are considered the Ornstein-Uhlenbeck process and one-parameter stochastic delay differential equation. In this paper the truncated estimation method is first applied to continuous-time systems. Asymptotic and non-asymptotic properties of the predictors are investigated. There is also found the rate of convergence of the second moment of a prediction error to its minimum value.

Download file
Counter downloads: 244

Keywords

дифференциальные уравнения с запаздыванием, процесс Орнштейна-Уленбека, системы с непрерывным временем, усеченное оценивание, адаптивные прогнозы, Ornstein-Uhlenbeck process, delay differential equations, prediction, continuous-time dynamic systems, truncated estimation

Authors

NameOrganizationE-mail
Dogadova Tatiana V.Tomsk State Universityaurora1900@mail.ru
Vasiliev Vyacheslav A.Tomsk State Universityvas@mail.tsu.ru
Всего: 2

References

Kuchler, U. & Kutoyants, Yu. A. (2000) Delay estimation for some stationary diffusion-type processes. Scandinavian Journal of Statistics. 27(3). pp. 405-414.
Kuchler, U. & Vasiliev, V.A. (2001) On Sequential Parameter Estimation for Some Linear Stochastic Differential Equations with Time Delay. Sequential Analysis. 20. pp. 117-146. DOI: 10.1081/SQA-100106052
Kuchler, U. & Vasiliev, V.A. (2010) On guaranteed parameter estimation of a multiparameter linear regression process. Automatica, Journal of IFAC, Elsevier. 46(4). pp. 637-646. DOI: 10.1016/j.automatica.2010.01.003
Myschkis, A.D. (1972) Linear Differential Equations with Delayed Argument. Moscow: Nauka. (In Russian).
Vasiliev, V.A. (2014) A Truncated Estimation Method with Guaranteed Accuracy. Annals of Institute of Statistical Mathematics. 66. pp. 141-163. DOI: 10.1007/s10463-013-0409-x
Guschin, A.A. & Kuchler, U. (1999) Asymptotic Inference for a Linear Stohastic Differential Equation with Time Delay. Bernoulli. 5(6). pp. 1059-1098.
Kusainov, M.I. & Vasiliev, V.A. (2015) On optimal adaptive prediction of multivariate autoregression. Sequential Analysis: Design Methods and Applications. 34(2). pp. 211-234. DOI: 10.1080/07474946.2015.1030977
 Adaptive prediction of stochastic differential equations with unknown parameters | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2017. № 38. DOI: 10.17223/19988605/38/3

Adaptive prediction of stochastic differential equations with unknown parameters | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2017. № 38. DOI: 10.17223/19988605/38/3

Download full-text version
Counter downloads: 733