Adaptive prediction of stochastic differential equations with unknown parameters
This paper proposes adaptive predictors of continuous-time dynamic systems with unknown parameters. Predictors are based on the truncated parameter estimators. In particular, there are considered the Ornstein-Uhlenbeck process and one-parameter stochastic delay differential equation. In this paper the truncated estimation method is first applied to continuous-time systems. Asymptotic and non-asymptotic properties of the predictors are investigated. There is also found the rate of convergence of the second moment of a prediction error to its minimum value.
Keywords
дифференциальные уравнения с запаздыванием, процесс Орнштейна-Уленбека, системы с непрерывным временем, усеченное оценивание, адаптивные прогнозы, Ornstein-Uhlenbeck process, delay differential equations, prediction, continuous-time dynamic systems, truncated estimationAuthors
Name | Organization | |
Dogadova Tatiana V. | Tomsk State University | aurora1900@mail.ru |
Vasiliev Vyacheslav A. | Tomsk State University | vas@mail.tsu.ru |
References

Adaptive prediction of stochastic differential equations with unknown parameters | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2017. № 38. DOI: 10.17223/19988605/38/3