The closed-loop optimal feedback model predictive control policy for systems with stochastic correlated parameters | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2017. № 39. DOI: 10.17223/19988605/39/2

The closed-loop optimal feedback model predictive control policy for systems with stochastic correlated parameters

We consider the following discrete-time with stochastic parameters system on the probabilistic space (Q, F ,P): x(k +1) = Ax(k) + B[n(k +1), k + 1]u(k), (1) where x(k) e Kn* is the vector of state, u(k) e Kn" is the vector of control inputs; n(k) e Кq is assumed to be stochastic time series. The matrices A e Кnx xnx, B [п (k), k] e К x u are the system matrix and the input matrix, respectively. All the elements of B[n(k),k] are assumed to be linear functions of n(k). Let F =( Fk )k>i be the complete filtration with a-field Fk generated by the {n(s): s=0,1,2,... ,k} that models the flow of information to time k. We allow the time series n(k) is serially correlated. Let assume that we know the first- and the second-order conditional moments for the stochastic vector n(k) about Fk : E {n(k + i)/ Fk } = n(k + i), E {n(k + i)nT (k + j)/ Fk } = © j (k ),(k = 0,1,2,...),(i, j = 1,2,..., l). We define the following cost function with receding horizon, which is to be minimized at every time k J (k + m / k) = E j j xT (k + i) R1(k, i) x(k + i) + u T (k + i -1/ k) R(k, i)u(k + i -1/ k) / x(k), Fk j, (2) on trajectories of system (1) over the sequence of predictive control inputs u(k/k),.,u(k+m-1/k) dependent on information up to time k, where R1(k,i) > 0, R(k,i) > 0 are given symmetric weight matrices of corresponding dimensions; m is the prediction horizon. The closed-loop optimal feedback law minimizing criterion (2) was derived via dynamic programming. Conditions that guarantee the stability of the infinite horizon formulation are given.

Download file
Counter downloads: 208

Keywords

управление с прогнозирующей моделью, замкнутая обратная связь, коррелированные параметры, model predictive control, closed-loop feedback control, correlated parameters

Authors

NameOrganizationE-mail
Dombrovskii Vladimir V.Tomsk State Universitydombrovs@ef.tsu.ru
Obedko Tatiana Y.Tomsk State Universitytatyana.obedko@mail.ru
Samorodova Mariya V.Tomsk State Universitysamorodova21@gmail.com
Всего: 3

References

Домбровский В.В. Ляшенко Е.А. Линейно-квадратичное управление дискретными системами со случайными параметрами и мультипликативными шумами с применением к оптимизации инвестиционного портфеля // А и Т. 2003. № 10. С. 50 - 65.
Fisher S., Bhattacharya R. Linear quadratic regulation of systems with stochastic parameter uncertainties // Automatica. 2009. No. 45. P. 2831-2841.
Ghaoui E.L. State-feedback control of systems with multiplicative noise via linear matrix inequalities // Syst. Control Letters. 1995. V. 24. P. 223-228.
Dragan V., Morozan T. The Linear Quadratic Optimization Problems for a Class of Linear Stochastic Systems With Multiplicative White Noise and Markovian Jumping // IEEE Transactions on Automatic Control. 2004. V. 49, No 5. P. 665-675.
Домбровский В.В., Объедко Т.Ю. Управление с прогнозированием системами с марковскими скачками при ограничениях и применение к оптимизации инвестиционного портфеля // Автоматика и телемеханика. 2011. № 5. С. 96-112.
Lee J.H., Cooly B.L. Optimal feedback control strategies for state-space systems with stochastic parameters // IEEE Transactions on Automatic Control. 1998. V. 43, No. 10. P. 1469-1475.
Домбровский В. В., Домбровский Д. В., Ляшенко Е. А. Управление с прогнозированием системами со случайными парамет рами и мультипликативными шумами и применение к оптимизации инвестиционного портфеля // А и Т. 2005. № 4. С. 8497.
Домбровский В.В., Домбровский Д.В., Ляшенко Е.А. Управление с прогнозированием системами со случайными зависимы ми параметрами при ограничениях и применение к оптимизации инвестиционного портфеля // А и Т. 2006. № 12. С. 71-85.
Dombrovskii V., Obedko T. Model predictive control for constrained systems with serially correlated stochastic parameters and port folio optimization // Automatica. 2015. V. 54. P. 325-331.
Mayne D.Q. Model predictive control: Recent developments and future promise // Automatica. 2014. V. 50. P. 2967-2986.
 The closed-loop optimal feedback model predictive control policy for systems with stochastic correlated parameters | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2017. № 39. DOI: 10.17223/19988605/39/2

The closed-loop optimal feedback model predictive control policy for systems with stochastic correlated parameters | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2017. № 39. DOI: 10.17223/19988605/39/2

Download full-text version
Counter downloads: 822