Model predictive control for stochastic systems with Markovian jumps and serially correlated parameters under constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2017. № 40. DOI: 10.17223/19988605/40/1

Model predictive control for stochastic systems with Markovian jumps and serially correlated parameters under constraints

Assume that the plant to be controlled can be described by the following model: x(k +1) = A[a(k +1), k + 1]x(k) + B[a(k +1), \(k +1), k + 1]u (k), (1) where x(k) e M"x is the vector of state, u(k) e M^ is the vector of control inputs; A[a(k), k] e M"xx"x, B[a(k),n(k),k] e Кnxxnu are system and input matrices, respectively; n(k) e Кq is assumed to be a stochastic time series and all of the elements of B[n(k),k] are assumed to be linear functions of n(k); {a(k); k = 0,1,2,...} is a finite-state discrete-time Markov chain taking values in {1,2,...,v} with known transition probability matrix and initial distribution. We assume that a(k) and n(k) are mutually independent and at the instant of decision making, the current state of the market is known, i.e., the Markov state {a(k)} is observable. Let F =( Fk )k>1 be the complete filtration with a-field Fk generated by the {r|(s): s = 0, 1, 2,.,k} that models the flow of information to time k. We allow the time series n(k) to be serially correlated. Let us assume that we know the first- and second-order conditional moments for the stochastic vector n(k) about Fk: E{(k + i)/ Fk} = n(k + i), E{(k + i)nT (k + j)/ Fk} = ©t] (k), (k = 0,1,2,...), (i, j = 1,2,...,l). We impose the following constraints on the decision variables: umm (k) < S(k)u (k) < umax (k), S(k) e Mpxn, umin (k), Umax (k) e MP. (2) To control system (1) subject to constraints (2), at each step k we minimize the quadratic criterion with a receding horizon m J(k + m /k) = E{^xT (k + i)R1(k + i)x(k + i) -R2 (k + i)x(k + i) + uT(k + i -1/k)R(k + i - 1)u(k + i -1/ k) / x(k), a(k), Fk}, i=1 where m is the prediction horizon; u(k/k),...,u(k+m-1/k) is the sequence of predictive controls under; R1(k+i)>0, R2(k+i)>0, and R(k+i)>0 are the weight matrices of corresponding dimensions. The model predictive control methodology was used to solve the problem. The optimal control strategies were synthesized under hard constraints imposed on the control variables.

Download file
Counter downloads: 217

Keywords

стохастические системы, марковские скачки, зависимые параметры, прогнозирующее управление, ограничения, stochastic systems, Markovian jumps, serially correlated parameters, model predictive control, constraints

Authors

NameOrganizationE-mail
Dombrovskii Vladimir V.Tomsk State Universitydombrovs@ef.tsu.ru
Obedko Tatiana Yu.Tomsk State Universitytatyana.obedko@mail.ru
Всего: 2

References

Пакшин П.В. Дискретные системы со случайными параметрами и структурой. М. : Физматлит, 1994.
Dombrovkii V., Obedko T. Portfolio Optimization in the Financial Market with Regime Switching under Constraints and Transaction Costs Using Model Predictive Control // European Control Conference (ECC). July 2015. P. 3371-3376.
Пакшин П.В., Ретинский Д.М. Робастная стабилизация систем случайной структуры с переключаемой статической обратной связью по выходу // Автоматика и телемеханика. 2005. № 7. C. 135-147.
Смагин В.И., Поползухина Е.В. Синтез следящих систем управления для объектов со случайными скачкообразными пара метрами и мультипликативными возмущениями // Вестник Томского государственного университета. 2000. № 271. С. 171-175. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000320510
Blackmore L., Bektassov A., Ono M., Williams B.C. Robust optimal predictive control of jump Markov linear systems using parti cles // Lecture Notes in Computer Science. 2007. V. 4416. P. 104-117.
Costa O.L.V., Okimura R.T. Discrete-time mean-variance optimal control of linear systems with Markovian jumps and multiplicative noise // International Journal of Control. 2009. V. 82, No. 2. P. 256-267.
Costa O.L.V., Oliveira A. Optimal mean-variance control for discrete-time linear systems with Markovian jumps and multiplicative noises // Automatica. 2012. V. 48, No. 2. P. 304-315.
Dragan V., Morozan T. The Linear Quadratic Optimization Problems for a Class of Linear Stochastic Systems with Multiplicative White Noise and Markovian Jumping // IEEE Transactions on Automatic Control. 2004. V. 49, No. 5. P. 665-675.
Li X., Zhou X.Y. Indefinite stochastic LQ control with Markovian jumps in a finite time horizon // Communications in Information and Systems. 2002. No. 2. P. 265-282.
Mayne D.Q. Model predictive control: Recent developments and future promise // Automatica. 2014. V. 50. P. 2967-2986.
Rawlings J. Tutorial: Model Predictive Control Technology // Proc. Amer. Control Conf. San Diego. California. June 1999. P. 662676.
Домбровский В.В., Объедко Т.Ю. Управление с прогнозированием системами с марковскими скачками при ограничениях и применение к оптимизации инвестиционного портфеля // Автоматика и телемеханика. 2011. № 5. С. 96-112.
Домбровский В.В., Объедко Т.Ю. Управление с прогнозирующей моделью линейными системами с марковскими скачками по критерию «mean-variance» при ограничениях // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2012. № 4 (21). С. 5-13. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000439971
Домбровский В.В., Самородова М.В. Управление с прогнозированием по квадратичному критерию линейными дискретными системами с марковскими скачками при ограничениях // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2016. № 1 (34). С. 4-10. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000528061
Dombrovslii V., Obedko T. Model predictive control for constrained systems with serially correlated stochastic parameters and portfolio optimization // Automatica. 2015. V. 54. P. 325-331.
Elliott R.J., Aggoun L., Moore J.B. Hidden Markov Models: Estimation and Control. Berlin : Springer-Verlag, 1995.
 Model predictive control for stochastic systems with Markovian jumps and serially correlated parameters under constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2017. №  40. DOI:  10.17223/19988605/40/1

Model predictive control for stochastic systems with Markovian jumps and serially correlated parameters under constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2017. № 40. DOI: 10.17223/19988605/40/1

Download full-text version
Counter downloads: 576