Open Markov queueing networks with control queues and quarantine node | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2017. № 41. DOI: 10.17223/19988605/41/4

Open Markov queueing networks with control queues and quarantine node

Recently the questions of information security and using of the antivirus software are very important. Such software finds and neutralizes harmful objects and threats for systems and networks. In systems and queueing networks functioning of the similar software can be described by means of queues in which all arriving objects are checked with the subsequent neutralization of harmful objects in a quarantine. In this paper, the open queueing network with the Poisson input flow with a parameter X is investigated. Every customer goes to the node i with probability p0i (i = 1, N, p0i = 1). In each of N nodes there are two queues: control queue and a queue for service. Every arriving customer joins control queue, in which it is scanning, checking on compliance to requirements of the network. The times of checking have exponential distribution with a parameter vi (i = 1, N ). After checking in the node i every customer is admitted as non-standard with probability pt and is directed to the queue of node (N+1) immediately and independently from the other customers. Or it joins queue of standard customers in the node i with probability 1 - p. Standard customers are served by the device, service times in each node are independent and have exponential distribution with parameter ц (i = 1, N ). After service at the node i every customer is sent immediately to the node j with probability pij, and it leaves the network with probability pi0 (l 1N=1 ptj + pi0 = 1, i = 1, N) . In the node (N+1) called quarantine the restoration of qualities of non-standard customers or their neutralization is carried out. The times of such service have exponential distribution with a parameter ^n+1. After service at the node (N+1) every customer is sent immediately to the node j with probability pN+y, and it leaves the network with probability pN+10 (l 1=1 PN+1 j + PN+10 = 1) . Network state at the moment t is characterized by a vector x(t) = (X1(t), *2(t),. ·., Xn+1(t)), where xi(t) = (m(t), ni(t)) is the state of the node i at the moment t, mi(t) is the number of the customers in the control queue, ni(t) is the number of the customers in the queue for service in the node i at the time moment t (i = 1, N ); xN+1(t) = nN+1(t) is the number of the customers in the quarantine node (N+1) at the moment t. The process x(t) is homogeneous Markov process with continuous time and finite or countable states spaceX = X1 xX2x... xXN+b где Xi = {х,- = (mi, n): mh щ > 0, i = 1,N }, Xn+1 = {xn+1 = nn+1: nn+1 > 0}. Traffic equations are following si = p0i + I s j(1 - pj)pji + sn+1pn+1i, i = 1N, j=1 N sN+1 = I s jpj. j=1 Let {p(x), xe X} be stationary distribution of states probabilities for the process x(t). We proved the following statement. If for all i = 1, N inequalities }£± < 1 tej(1 - p, ) < 1 ^N+1 < 1 are carried out, then Markov process x(t) is ergodic and stationary distribution of the network states probabilities has the following form p(x) = p1(x1) p2(x2). pn+1(xn+1), x e X, where Pl (x) = [ ^ J' [ X^L-p) J - ^ - ], i = 11, xs N+11 n+1 L -xs N+11 ц N+1 j | ц N+1 j (s,-, 1, N +1) is solutions of the traffic equations.

Download file
Counter downloads: 167

Keywords

сеть массового обслуживания, карантинные очереди в узлах, стационарное распределение, эргодичность, queueing network, control queues in the nodes, stationary distribution, ergodicity

Authors

NameOrganizationE-mail
Letunovich Yuliya E.F. Scorina Gomel State Universityyletunovich@gmail.com
Yakubovich Oksana V.F. Scorina Gomel State Universityyakubovich@gsu.by
Всего: 2

References

Боярович Ю.С. Инвариантность стационарного распределения вероятностей состояний замкнутой сети массового обслужи вания с временно неактивными заявками // Автоматика и телемеханика. 2012. № 10. С. 32-41.
Боярович Ю.С. Стационарное распределение сети с различными типами заявок и ненадежными требованиями // Теория ве роятностей, математическая статистика и их приложения : сб. науч. ст. Минск : БГУ, 2009. С. 14-20.
Малинковский Ю.В., Нуеман А.Ю. Мультипликативность стационарного распределения в открытых сетях с многорежим ными стратегиями обслуживания // Весщ НАНБ. Серыя ф1з.-мат. навук. 2001. № 3. С. 129-134.
Дудовская Ю.Е., Якубович О.В. Открытая марковская сеть массового обслуживания с «карантинным» узлом // XII Белорус ская математическая конференция : материалы Междунар. науч. конф. Минск, 5-10 сентября 2016 г.: в 5 ч. / ред. С.Г. Кра-совский. Ч. 4. Минск : Институт математики НАН Беларуси, 2016. С. 5-6.
Jackson J.R. Jobshop-like Queueing Systems // Manag. Sci. 1963. V. 10, No. 1. P. 131-142.
 Open Markov queueing networks with control queues and quarantine node | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2017. № 41. DOI: 10.17223/19988605/41/4

Open Markov queueing networks with control queues and quarantine node | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2017. № 41. DOI: 10.17223/19988605/41/4

Download full-text version
Counter downloads: 780