Model predictive control for nonlinear stochastic systems with serially correlated parameters under constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 42. DOI: 10.17223/19988605/42/1

Model predictive control for nonlinear stochastic systems with serially correlated parameters under constraints

Let the control object is described by the equation: x(k +1) = Ax(k) + B[r(k +1), k + 1]u(k) + f (x(k), u(k), w(k +1)), (1) where x(k) is the nx-dimensional vector of state; u(k) is the nu-dimensional vector of control; w(k) is the nw-dimensional vector of white noses with zero-mean and identity covariance matrix; n(k) is the ^-dimensional stochastic vector; w(k) is independent of n(k) (k = 0, 1, 2...); A, B[n(k),k] are the matrices of corresponding dimensions. All of the elements of B[n(k),k] are assumed to be linear functions of n(k). The function f is defined by its statistical properties as follows: E { f (x(k ),u(k ),w(k+1))/ x(k )} = 0, E {f (x(k )u(k ),w(k+1))f T (x(k )u(k ),w(k+1)>/x(k )}=T 0+IT (xT(k )Wx(k )+uT(k )Mu(k)) for all x(k), where r = n(n + 1)/2, Tl (i = 0,r), W' and M' (i = 1,r) are positive semidefinite and symmetric matrices. Let F = (§£be the complete filtration with a-field generated by the {t|(,s): 5 = 0, 1,2, ...,k} that models the flow of information to the moment k. We allow the parameters n(k) to be serially correlated. Let us assume that we know the first- and second-order conditional moments for the stochastic vector n(k) about F : E {r(k + i)/Fk } = r(k + i), E{r(k + i)rT (k + j) / Fk } = (k), (k = 0,1,2,...), (i, j = 0,1,2,..., d). We impose the following inequality constraints on the control inputs (element-wise inequality): umm(k) < S(k)u(k) < umax(k), (2) where S(k) is the matrix of corresponding dimension. For control of system (1) we synthesize the strategies with a predictive control model. At each step k we minimize the quadratic criterion with a receding horizon m J(k+mjk) = E{ ^ xT (k + i)R (k + i)x(k + i) - R(k + i)x(k + i) + uT (k + i - 1/k)R(k + i - 1)u(k + i - 1/k) /x(k), F}, i=1 on trajectories of system (1) over the sequence of predictive controls u(kk), ..., u(k + m- 1/k) dependent on information up to moment k, under constraints (2), where R (k + i) > 0, R(k + i) > 0 are given symmetric weight matrices of corresponding dimensions, R (k + i) is a given vector of corresponding dimension, m is the prediction horizon, k is the current moment. The synthesis of predictive control strategies is reduced to the sequence of quadratic programming tasks.

Download file
Counter downloads: 261

Keywords

нелинейные стохастические системы, прогнозирующее управление, сериально коррелированные параметры, ограничения, stochastic nonlinear systems, model predictive control, serially correlated parameters, constrains

Authors

NameOrganizationE-mail
Dombrovskii Vladimir V.Tomsk State Universitydombrovs@ef.tsu.ru
Pashinskaya Tatiana Y.Tomsk State Universitytatyana.obedko@mail.ru
Всего: 2

References

Mayne D.Q. Model predictive control: Recent developments and future promise // Automatica. 2014. V. 50 (12). P. 2967-2986.
Goodwin G.S., Carrasco D.C., Seron M.M. Predictive control: a historical perspective // Int. J. of Robust and Nonlinear Control. 2012. V. 22. P. 1296-1313.
Farina M., Giulioni L., Scattolini R. Stochastic linear model predictive control with chance constraints : a review // J. of Process Control. 2016. V. 44. P. 53-67.
Primbs J.A., Sung C.H. Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise // IEEE Transactions on Automatic Control. 2009. V. AC-54, No. 2. P. 221-230.
Домбровский В.В., Домбровский Д.В., Ляшенко Е.А. Управление с прогнозированием системами со случайными зависи мыми параметрами при ограничениях и применение к оптимизации инвестиционного портфеля // Автоматика и телемеханика. 2006. № 12. С. 71-85.
Dombrovskii V., Obyedko T. Model predictive control for constrained systems with serially correlated stochastic parameters and portfolio optimization // Automatica. 2015. V. 54 (4). P. 325-331.
Смагин В.И., Поползухина Е.В. Синтез следящих систем управления для объектов со случайными скачкообразными пара метрами и мультипликативными возмущениями // Вестник Томского государственного университета. 2000. № 271. С. 171 -174.
Домбровский В.В., Объедко Т.Ю. Управление с прогнозированием системами с марковскими скачками при ограничениях и применение к оптимизации инвестиционного портфеля // Автоматика и телемеханика. 2011. № 5. С. 96-112.
Kiseleva M.Y., Smagin V.I. Model Predictive Control of Discrete Systems with State and Input Delays // Вестник Томского гос ударственного университета. Управление, вычислительная техника и информатика. 2011. № 1 (14). С. 5-12.
Mhaskar P., El-Farra N.H., Christofides P.D. Robust hybrid predictive control of nonlinear systems // Automatica. 2005. V. 41. P. 209-217.
Kantas N., Maciejowski J.M., Lecchini-Visintini A. Sequential monte Carlo for model predictive control // Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences / L. Magni, D.M. Raimondo, F. Allgower (eds). Berlin, Heidelberg : Springer, 2009. V. 384. P. 263-273.
Yaz E. A control scheme for a class of discrete nonlinear stochastic systems // IEEE Transactions on Automatic Control. 1987. V. AC-32, No. 1. P. 77-80.
Jacobson D.H. A general result in stochastic optimal control of nonlinear discrete-time systems with quadratic performance criteria // J. of Mathematical Analysis and Applications. 1974. V. 47 (1). P. 153-161.
Домбровский В.В., Домбровский Д.В., Ляшенко Е.А. Управление с прогнозированием нелинейными стохастическими системами при ограничениях // Вестник Томского государственного университета. 2006. № 18. С. 320-323.
Dombrovskii V., Obyedko T., Samorodova M. Model predictive control of constrained Markovian jump nonlinear stochastic systems and portfolio optimization under market frictions // Automatica. 2018. V. 87 (1). P. 61-68. https://doi.org/10.1016/ j.automatica.2017.09.018.
 Model predictive control for nonlinear stochastic systems with serially correlated parameters under constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 42. DOI: 10.17223/19988605/42/1

Model predictive control for nonlinear stochastic systems with serially correlated parameters under constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 42. DOI: 10.17223/19988605/42/1

Download full-text version
Counter downloads: 846