Adaptive prediction of non-Gaussian Ornstein-Uhlenbeck process
This paper proposes adaptive predictors of non-Gaussian Ornstein-Uhlenbeck process with unknown parameters. Predictors are based on the truncated parameter estimators. Asymptotic and non-asymptotic properties of the predictors are investigated. In particular, there is found the rate of convergence of the second moment of a prediction error to its minimum value. In addition, there is established an asymptotic optimality of the adaptive predictors in the sense of a special risk function. The structure of the risk function assumes the optimization of both the duration of observations and the prediction quality.
Keywords
функция риска, негауссовский процесс Орнштейна-Уленбека, адаптивное оптимальное прогнозирование, усеченное оценивание параметров, non-Gaussian Ornstein-Uhlenbeck process, risk function, adaptive optimal prediction, truncated parameter estimationAuthors
Name | Organization | |
Dogadova Tatiana V. | Tomsk State University | aurora1900@mail.ru |
Vasiliev Vyacheslav A. | Tomsk State University | vas@mail.tsu.ru |
References

Adaptive prediction of non-Gaussian Ornstein-Uhlenbeck process | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 43. DOI: 10.17223/19988605/43/3