Predictive control for markov jump systems with markov switching autoregressive multiplicative noise | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 44. DOI: 10.17223/19988605/44/1

Predictive control for markov jump systems with markov switching autoregressive multiplicative noise

Assume that the plant to be controlled can be described by the following model xk+1 - A[0k+1]xk + B[0k +1, Jk+1]uk > (1) Jk+1 - a[0k+1]Jk +P[0k+1] + ^[0k+1]wk+1- (2) V (3) i=1 V V V a[0t] = xe,,«m] = SQaP''0!0*] = хе„ст';а',ст' e R?X?,P' e R?, (4) /=1 /=1 /=1 m+i,yk+i\ = {в'[а'ук]+в'т +B\&wk+l]),£',F„B' £ 1Г"ХИ", (5) where xk e M"1 is the vector of states, uk e M"" is the vector of control inputs, yk el' is a sequence of stochastic vectors, wk e R' is a zero mean independent random sequence; 9i,k+1 (i = 1,v ) are the components of the vector 9k+1, 9k = [S(Tk, 1), ..., S(Tk, v)]T, S(Tk,j) is a Kronecker function; {Tk; k = 0, 1, 2, .} is a finite-state discrete-time homogeneous Markov chain taking values in {1, 2, v} with transition probability matrix P = [P/]. All of the elements of matrix B are assumed to be linear functions of vector y. We impose the following inequality constraints on the control inputs (element-wise inequality): Uk ^SkUk^Uk = (6) where Sk e , «Г*.«Г" e · For control of system (1)-(5) we synthesize the strategies with a predictive control model. At each step k we minimize the quadratic criterion with a receding horizon Jк +m\ к - E{2 Xk+iRk+iXk+i + uk+i-1\kRk+i-1uk+i-1\k \ xk,0k,Л}, i-1 on trajectories of system (1) over the sequence of predictive controls Uk\k, ..., Uk+m- 1\k dependent on information up to time k, under constraints (6), where R^- > 0,Rk +i_1 > 0 are given symmetric weight matrices of corresponding dimensions; m is the prediction horizon, k is the current moment. The synthesis of predictive control strategies is reduced to the sequence of quadratic programming tasks.

Download file
Counter downloads: 167

Keywords

стохастические системы, марковские скачки, авторегрессионый мультипликативный шум, прогнозирующее управление, ограничения, stochastic systems, Markov jumps, autoregressive multiplicative noise, model predictive control, constrains

Authors

NameOrganizationE-mail
Dombrovskii Vladimir ValentinovichTomsk State Universitydombrovs@ef.tsu.ru
Pashinskaya Tatiana YUrievnaTomsk State Universitytatyana.obedko@mail.ru
Всего: 2

References

Costa O.L.V., Fragoso M.D., Marques R.P. Discrete-time Markov jump linear systems. New York : Springer, 2005. 286 p.
Mayne D.Q. Model predictive control: Recent developments and future promise // Automatica. 2014. V. 50, No. 12. P. 2967-2986.
Henandez-Medjias M.A., Sala A., Querol A., Arino C. Multiple-Horizon predictive control for Markov/switched linear systems // IFAC-PapersOnLine. 2015. V. 48, No. 23. P. 230-235.
Tonne J., Jilg M., Stursberg O. Constrained Model Predictive Control of High Dimensional Jump Markov Linear Systems // American Control Conference. Palmer House Hilton. July 1-3, Chicago, IL, USA, 2015. P. 2993-2998.
Dombrovskii V.V., Obyedko T.Yu. Predictive control of systems with Markovian jumps under constraints and its application to the investment portfolio optimization // Automation and remote control. 2011. V. 72, No. 5. P. 989-1003.
Chitraganti S., Aberkane S., Aubrun C., Valencia-Palomo G., Dragan V. On control of discrete-time state-dependent jump linear systems with probabilistic constraints: a receding horizon approach // Systems & Control Letters. 2014. V. 74. P. 81-89.
Lu J, Xi Y, Li D. Stochastic model predictive control for probabilistically constrained Markovian jump linear systems with additive disturbance // Int. J Robust Nonlinear Control. 2017. P. 1-15.
Sala A., Henandez-Medjias M.A., Arino C. Stable receding-horizon scenario predictive control for Markov-jump linear systems // Automatica. 2017. V. 86. P. 121-128.
Patrinos P., Soparasakis P., Sarimveis H., Bemporad A. Stochastic model predictive control for constrained discrete-time Markovian switching systems // Automatica. 2014. V. 50, No. 10. P. 2504-2514.
Dombrovskii V.V., Obyedko T.Yu., Samorodova M. Model predictive control of constrained Markovian jump nonlinear stochastic systems and portfolio optimization under market frictions // Automatica. 2018. V. 87, No. 1. P. 61-68.
Krolzig H.-M. Markov Switching Vector Autoregressions. Modelling, Statistical Inference and Application to Business Cycle Analysis. Berlin : Springer, 1997. 357 p.
Elliott R.J., Aggoun L., Moore J.B. Hidden Markov models: Estimation and control. Berlin, Heidelberg, New York : Springer, 1995. 382 p.
 Predictive control for markov jump systems with markov switching autoregressive multiplicative noise | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 44. DOI: 10.17223/19988605/44/1

Predictive control for markov jump systems with markov switching autoregressive multiplicative noise | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 44. DOI: 10.17223/19988605/44/1

Download full-text version
Counter downloads: 652