Predictive control for markov jump systems with markov switching autoregressive multiplicative noise
Assume that the plant to be controlled can be described by the following model xk+1 - A[0k+1]xk + B[0k +1, Jk+1]uk > (1) Jk+1 - a[0k+1]Jk +P[0k+1] + ^[0k+1]wk+1- (2) V (3) i=1 V V V a[0t] = xe,,«m] = SQaP''0!0*] = хе„ст';а',ст' e R?X?,P' e R?, (4) /=1 /=1 /=1 m+i,yk+i\ = {в'[а'ук]+в'т +B\&wk+l]),£',F„B' £ 1Г"ХИ", (5) where xk e M"1 is the vector of states, uk e M"" is the vector of control inputs, yk el' is a sequence of stochastic vectors, wk e R' is a zero mean independent random sequence; 9i,k+1 (i = 1,v ) are the components of the vector 9k+1, 9k = [S(Tk, 1), ..., S(Tk, v)]T, S(Tk,j) is a Kronecker function; {Tk; k = 0, 1, 2, .} is a finite-state discrete-time homogeneous Markov chain taking values in {1, 2, v} with transition probability matrix P = [P/]. All of the elements of matrix B are assumed to be linear functions of vector y. We impose the following inequality constraints on the control inputs (element-wise inequality): Uk ^SkUk^Uk = (6) where Sk e , «Г*.«Г" e · For control of system (1)-(5) we synthesize the strategies with a predictive control model. At each step k we minimize the quadratic criterion with a receding horizon Jк +m\ к - E{2 Xk+iRk+iXk+i + uk+i-1\kRk+i-1uk+i-1\k \ xk,0k,Л}, i-1 on trajectories of system (1) over the sequence of predictive controls Uk\k, ..., Uk+m- 1\k dependent on information up to time k, under constraints (6), where R^- > 0,Rk +i_1 > 0 are given symmetric weight matrices of corresponding dimensions; m is the prediction horizon, k is the current moment. The synthesis of predictive control strategies is reduced to the sequence of quadratic programming tasks.
Keywords
стохастические системы, марковские скачки, авторегрессионый мультипликативный шум, прогнозирующее управление, ограничения, stochastic systems, Markov jumps, autoregressive multiplicative noise, model predictive control, constrainsAuthors
Name | Organization | |
Dombrovskii Vladimir Valentinovich | Tomsk State University | dombrovs@ef.tsu.ru |
Pashinskaya Tatiana YUrievna | Tomsk State University | tatyana.obedko@mail.ru |
References

Predictive control for markov jump systems with markov switching autoregressive multiplicative noise | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 44. DOI: 10.17223/19988605/44/1