Robust extrapolation in discrete systems with random jump parameters and unknown input | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 44. DOI: 10.17223/19988605/44/4

Robust extrapolation in discrete systems with random jump parameters and unknown input

We consider the model of an object that is described by a discrete equation x(k+1) = Ax(k) + U(k)+f(k)+qy(k), x(0) = x0, where x(k) e R" is the state vector, y(k) is a Markov chain with n statesyl,y2,...,y„; Uy(k) is known input;f(k) is the unknown input; X0 is a random vector (the variances are assumed to be known N0I = M{(x0 -x0)(x0 -x0)T / у = у}, i = Щ, x0 = M{x0} ); Af is given matrix; qY(k) is random disturbance with the following characteristics M{qy(k)} = 0 , M{qy(k)qT(k)} = . The observation channel has the form y(k) = S.fx(k) + v.f(k), where vy(k) is random errors of observations independent of the qT (k) with M{vy (k)} = 0, M{vy (k) vT(k)} = . According to the information obtained at time k, it is required to find an estimate of the state of the forecast x(k +1) by minimizing the following criterion: Tf n n J[0;Tf ] = M {[££ Pi (k )eT(k )R (k )e(k) + £ p, (Tf )e\Tf )Ц (Tf )e(Tf)] /у(0) = y0}, k=0 i=1 i =1 where e(k) = x(k) - x(k), R (k) > 0 and Lt (Tf) > 0 are weight matrices, у0 is the initial value of the variable y. The structure of the extrapolator is defined by the equation x(k +1) = Ax(k) + U(k) + f (k) + K(k)(y(k) - Syx(k)), x(0) = x, where K(k) is the matrix of transmission coefficients to be determined. Theorem. Assume that there exist positive definite matrices Nt and Lt being solutions of the two-point boundary problem: n Nt(k +1) = (At -K(k)StPt;Nj(k))(At -K(k)St)T + Qt + K(k)VtK(k)T, N(0) = N0. j=1 n L(k) = (A - K(kS)T(XPjLj (k+1))(A - K(kS)+R, Lt(Tf)=Lt,. j=1 Then the vector ct(K(k)), composed with using of rows of the matrix K(k), is determined by the formula: ct(K (k)) = (k + 1)[L (k +1) ® St (k ))StT + Ц (k +1) ® V ])-1 x '=1 j=1 x ct(]Tpt(k + 1)Lt(k +1)AtC£pt,jNj(k))StT). t=1 j=1 Thus, the synthesis algorithm robust extrapolator is developed that allows to define estimate of the state vector for discrete linear system with random jump parameter described by a Markov chain with a finite number of states. The filter transmission coefficients are proposed to be chosen by minimizing the sum of the quadratic forms of extrapolation errors, while averaging over the probabilities of the state of the jump parameter using recursive estimation algorithms with an unknown input. The extrapolation problem is considered when the value у is identified both accurately and with errors.

Download file
Counter downloads: 145

Keywords

дискретная модель, квадратичный критерий, робастная экстраполяция, скачкообразные параметры, неизвестный вход, discrete model, quadratic criterion, robust extrapolation, jump parameters, unknown input

Authors

NameOrganizationE-mail
Kim Konstantin StanislavovichTomsk State Universitykks93@rambler.ru
Smagin Valery IvanovichTomsk State Universityvsm@mail.tsu.ru
Всего: 2

References

Wonham W.M., Bharucha-Reid A.T. Random differential equation in control theory // Probabilistic methods in applied mathematics. 1971. P. 131-213.
Blair W.P., Sworder D.D. Feedback-control of a class of linear discrete systems with jump parameters and quadratic cost criteria // Int. J. of Control. 1975. V. 21, is. 5. P. 833-841.
Shi P., Boukas E.K., Agarwal R.K. Kalman filtering for continuous-time uncertain systems with Markovian jumping parameters // IEEE Transactions on Automatic Control. 1999. V. 44, is. 8. P. 1592-1597.
Ломакина С.С., Смагин В.И. Робастная фильтрация для непрерывных систем со случайными скачкообразными парамет рами и вырожденными шумами в наблюдениях // Автометрия. 2005. № 2. С. 36-43.
Liu W. State estimation for discrete-time Markov jump linear systems with time-correlated measurement noise // Automatica. 2017. V. 76. P. 266-276.
Costa E.F., De Saporta B. Linear minimum mean square filters for Markov jump linear systems // IEEE Trans. On Automatic Control. 2017. V. 62, is. 7. P. 3567-3572.
Белявский Г.И., Мисюра И.В. Фильтрация сигналов со скачками, возникающими в дискретном времени и с конечным го ризонтом // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Физико-математические науки. 2014. № 2 (194). С. 137-144.
Mariton M. Jump linear systems in automatic control. New York : Marcel Dekker, 1990.
Gomes M.J.F., Costa E.F. On the stability of the recursive Kalman filter with Markov jump parameters // Proc. 2010 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30 - July 02, 2010. P. 4159-4163.
Terra M.H., Ishihara J.Y., Jesus G., Cerri J.P. Robust estimation for discrete-time Markovian jump linear systems // IEEE Transactions on Automatic Control. V. 58, No. 8. 2013. P. 2065-2071.
Ланкастер П. Теория матриц. М. : Наука, 1973. 280 с.
Janczak D., Grishin Yu. State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming // Control and Cybernetics. 2006. No. 4. P. 851-862.
Koshkin G.M., Smagin V.I. Filtering and prediction for discrete systems with unknown input using nonparametric algorithms // Proc. 10th International Conference on Digital Technologies. Zilina, Slovakia, 2014. P. 120-124.
Witczak M. Fault diagnosis and fault-tolerant control strategies for non-linear systems. Ch. 2: Unknown input observers and filters: lecture notes in electrical engineering. Springer International Publishing, Switzerland, 2014. P. 19-56.
Smagin V., Koshkin G., Udod V. State estimation for linear discrete-time systems with unknown input using nonparametric technique // Proc. International Conference on Artificial Intelligence and Control Automation (AICA 2015). Phuket, Thailand, 2015. P. 675-677.
Smagin V.I., Koshkin G.M. Kalman filtering and conrol algorithms for systems with unknown disturbances and parameters using nonparametric technique // Proc. 20th International Conference on Methods and Models in Automation and Robotics (MMAR 2015). Miedzyzdroje. Poland, 2015. P. 247-251.
Li F., Shi P., Wu. L. Control and filtering for semi-markovian jump systems. New York : Springer, 2016. 208 p.
 Robust extrapolation in discrete systems with random jump parameters and unknown input | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 44. DOI: 10.17223/19988605/44/4

Robust extrapolation in discrete systems with random jump parameters and unknown input | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 44. DOI: 10.17223/19988605/44/4

Download full-text version
Counter downloads: 652