Model of inventory control of homogeneous products with relay control of production rate and MMP-flow of sales moments | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 44. DOI: 10.17223/19988605/44/6

Model of inventory control of homogeneous products with relay control of production rate and MMP-flow of sales moments

In this paper, we consider a mathematical model of a system of inventory management, on the input of which some resources (goods) come with a speed C(S(t)), where S(t) is the volume of accumulated resources in the system at the time t. Consumption of the resource (sales) is carried out at random moments of time by batches of random volume, having an arbitrary density distribution ф(x) and momentsM{x} = a, M {x2} = a2. The moments of resource consumption time form a MMP-flow with n states and matrix of infinitesimal characteristics [q. ] . For a stationary distribution P(s) = P{S(t) < s;X(t) = Xj of process S(t) and intensity X(t) equation n C(s)P, (s) = -Xfi i.vi • V(/ /> m . j> l v . .vicpi.vK/.v ) + Уqj'Pj (s) + *,JP (s + x i=i о is obtained. The main attention is paid to the case when the function C(S(t)) is determined by the relation C(S) = C at S < S0 and C(S) = 0 with S > S0, the magnitude C = (1 + 6)X0a and the parameter 6 << 1. It is proved that in this case A . я A - S0) + O(6), s < S0 1+6 a4! Л Pi (s) = я., s > S„ X Cl n-1 1 n n where я is the final probability of the state X , A1 = X0 a, A, = 0 2 - a2 V-V (X0-X( )Rit У P (X0-X , X0 is the average 2 Tt 7=1 ' intensity of the flow of purchases, the matrix [r ] is the matrix of the eigenvectors of the matrix [q ] , the matrix [P ] is the matrix inverse to the matrix [ R ] . Based on a comparison of the proposed asymptotic distribution with the exact one in the case of a two-state flow and the exponential distribution of the quantities of purchases, it was concluded that the proposed asymptotic distribution can be applied. The dependence of the average profit on the quantities C and S has been analyzed.

Download file
Counter downloads: 211

Keywords

управление запасами, релейное управление, ММР-поток, асимптотическое распределение количества продукции, Inventory control, relay control, MMP flow, asymptotic distribution of quantity of products

Authors

NameOrganizationE-mail
Livshits Klimenty IsaakovichTomsk State Universitykim47@mail.ru
Ulyanova Ekaterina SergeevnaTomsk State Universityulyanovaeks@gmail.com
Всего: 2

References

Arrow K.J., Harris Th.E., Marschak J. Optimal Inventory Policy // Econometrica. 1951. V. 19 (3). P. 205-272.
Dvoretzky A., Kiefer J., Wolfowitz J. On the optimal character of the (S, s) policy in inventory theory // Econometrica. 1953. V. 21. P. 586-596.
Горский А.А., Локшин Б.Я. Математическая модель процесса производства и продажи для управления и планирования производства // Фундаментальная и прикладная математика. 2002. Т. 8, № 1. С. 34-45.
Параев Ю.И. Решение задачи об оптимальном производстве, хранении и сбыте товара // Известия РАН. Теория и системы управления. 2000. № 2. С. 103-107.
Параев Ю.И. Игровой подход к решению задачи производства, хранения и сбыта товара // Автоматика и телемеханика. 2005. № 2. C. 115-123.
Chopra S., Meindl P. Supply chain management: Strategy, Planning and Operation. New Jersey : Pearson Education, 2013. 529 p.
Beyer D., Cheng F., Sethi S.P., Taksar M. Markovian demand inventory models. New York : Springer, 2010. 255 p.
Nazarov A., Broner V. Inventory Management System with On/Off Control of Input Product Flow // Communications in Computer and Information Science. 2017. № 800. P. 370-381.
Назаров А.А., Бронер В.И. Система управления запасами с гиперэкспоненциальным распределением объемов потребления ресурсов // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2016. № 1 (34). C. 43-49.
Лившиц К.И., Ульянова Е.С. Диффузионная аппроксимация процесса производства и сбыта скоропортящейся продукции // Известия высших учебных заведений. Физика. 2015. Т. 58, № 11-2. С. 281-285.
Livshits K., Ulyanova E. Switch-hysteresis control of the production process in model with perishable goods // Communications in Computer and Information Sciences. 2016. № 638. P. 192-206.
Livshits K., Ulyanova E. Switch-hysteresis control of the selling times flow in a model with perishable goods // Communications in Computer and Information Science. 2015. № 564. P. 263-274.
Zhang D., Xu Y., Wu Y. Single and multi-period optimal inventory control models with risk-averse constraints // European Journal of Operational Research. 2009. V. 199. P. 420-434.
Zhang J., Chen J. A multi-period pricing and inventory control model // Journal of Systems Science and Complexity. 2009. V. 23. P. 249-260.
Карлин С.М. Основы теории случайных процессов. М. : Мир, 1971. 536 с.
Лившиц К.И., Бублик Я.С. Вероятность разорения страховой компании при дважды стохастическом потоке страховых выплат // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 1 (10). С. 66-77.
 Model of inventory control of homogeneous products with relay control of production rate and MMP-flow of sales moments | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 44. DOI: 10.17223/19988605/44/6

Model of inventory control of homogeneous products with relay control of production rate and MMP-flow of sales moments | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 44. DOI: 10.17223/19988605/44/6

Download full-text version
Counter downloads: 652