Model predictive control of distributed stochastic hybrid systems with multiplicative noises under constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 45. DOI: 10.17223/19988605/45/1

Model predictive control of distributed stochastic hybrid systems with multiplicative noises under constraints

We consider the following complex Markov jump linear system composed of interconnected subsystems x(q)(k +1) = A(q)[a(q) (k +1), k + 1]x(q) (k) + B(q)[a(q) (k +1), k + 1]u (q) (k) + ->-V gjq)[a(q)(k +1),k + 1]w(q)(k + 1)u(q)(k),q = 1S, ^ ^ j=1 where ^q)(k) is the n(q) - dimensional subsystem state vector, u(q)(k) is the n(q) - dimensional subsystem control vector; A(q)[a(q)(k),k], B/q)[a(q)(k),k], j = 0, ..., n are matrices of appropriate dimensions; w/q)(k) is a sequence of white noises; a(q)(k) denotes a time-invariant Markov chain taking values in a finite set of states {1, 2, ..., Vq}. These subsystems interact in the following way. The state of Markov chain a(q)(k) of qth subsystem (q = 1, 2, ..., s) at the moment k depends on states of Markov chains a(r)(k - 1) (r = 1, 2, ..., s) at the moment k - 1. Thus, the complex system dynamics depends on a discrete-time vector stochastic process a(k) = [a(1)(k), a(2)(k), ..., a(s)(k)]T taking values in a finite set of states {q, jq}(q = 1, 2, ..., s; jq = 1, 2, ..., Vq). The process a(k) is a simple connected Markov chain with the transition probability matrix p,...,i,= p{«1(k +1) = «u,...,«s(k +1 = «j/a1(k) = «И,...,as(k) = «si,к £ p1,...,,^..j =1 , J1,-,Js and the initial distribution Pj11 = P{«1(0) = Ji,-,«s(0) = Л},(л = irv^;..,js = TV,), £ P1 = 1. jj It is assumed that the Markov chain a(k) is observable at the moment k. The following constraints are imposed on each subsystem control effects umn (k) < s (q) (k)u(q) (k) < u^ (k), q=1;,, (2) where S(k) is the matrix of corresponding dimension. For control of system (1) we synthesize the strategies with a predictive control model according to the following rule. At each step k we minimize the following quadratic objective with receding horizon J(k + m / k) = M{£ £(x(q)(k + i))TR(q)(k + i)x(q)(k + i) -R(q)(k + i)x(q)(k + i) + q=1i=1 +(u(q)(k + i -1 / k))TR(q)(k + i - 1)u(q)(k + i -1 / k)/x(q)(k),a(k)}, on trajectories of system (1) over the sequence of predictive controls u( q)(k +1 / k), l = 0, m -1, depending on the subsystem state at the current time kunder constraints (2); R(q)(k + i) >0, R(q)(k + i) >0, R(q)(k + i) >0 are weigh matrices of appropriate dimensions; m is the prediction horizon; k is the current moment. The synthesis of predictive control strategies is reduced to the sequence of quadratic programming tasks.

Download file
Counter downloads: 191

Keywords

управление с прогнозирующей моделью, распределенные гибридные системы, векторная односвязная цепь Маркова, мультипликативные шумы, ограничения, model predictive control, distributed hybrid systems, vector simple connected Markov chain, multiplicative noises, constraints

Authors

NameOrganizationE-mail
Dombrovskii Vladimir ValentinovichTomsk State Universitydombrovs@ef.tsu.ru
Pashinskaya Tatiana YurievnaTomsk State Universitytatyana.obedko@mail.ru
Всего: 2

References

Billio M., Pelizzon L. Value-at-Risk: a multivariate switching regime approach // Journal of Empirical Finance. 2000. No. 7. P. 531-554.
Teel A.R., Subbaram A., Sferlazza A. Stability analysis for stochastic hybrid systems: a survey// Automatica. 2014. V. 50, No. 10. P. 2435-2456.
Mayne D.Q. Model predictive control: Recent developments and future promise // Automatica. 2014. V. 50, No. 12. P. 2967-2986.
Costa O.L.V., Fragoso M.D., Marques R.P. Discrete-time Markov jump linear systems. New York : Springer, 2005. 286 p.
Tonne J., Jilg M., Stursberg O. Constrained Model Predictive Control of High Dimensional Jump Markov Linear Systems // Proc. American Control Conference. Palmer House Hilton. July 1-3, Chicago, IL, USA, 2015. P. 2993-2998.
Dombrovskii V.V., Obyedko, T.Yu. Predictive control of systems with Markovian jumps under constraints and its application to the investment portfolio optimization // Automation and remote control. 2011. V. 72, No. 5. P. 989-1003.
Dombrovskii V.V., Obyedko T.Yu., Samorodova M. Model predictive control of constrained Markovian jump nonlinear stochastic systems and portfolio optimization under market frictions // Automatica. 2018. V. 87, No. 1. P. 61-68.
Patrinos P., Soparasakis P., Sarimveis H., Bemporad A. Stochastic model predictive control for constrained discrete-time Markovian switching systems // Automatica. 2014. V. 50, No. 10. P. 2504-2514.
Blackmore L., Bektassov A, Ono M., Williams B.C. Robust optimal predictive control of jump Markov linear systems using particles // Hybrid systems: Comput. and Control / A. Bemporad, A. Bicchi, G. Buttazzo, eds. New York : Springer Verlag, 2007. V. 4416: Lecture Notes in Computer Science. P. 104-117.
Домбровский В.В., Объедко Т.Ю. Управление с прогнозированием взаимосвязанными гибридными системами с марковскими скачками при ограничениях // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2012. № 3 (20). С. 5-12.
Elliott R.J., Aggoun L., Moore J.B. Hidden Markov models: Estimation and control. Berlin, Heidelberg, New York : Springer, 1995. 382 p.
 Model predictive control of distributed stochastic hybrid systems with multiplicative noises under constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 45. DOI: 10.17223/19988605/45/1

Model predictive control of distributed stochastic hybrid systems with multiplicative noises under constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 45. DOI: 10.17223/19988605/45/1

Download full-text version
Counter downloads: 956