Optimal estimate of the states of a generalized synchronous flow of second-order events under conditions of incomplete observability | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 45. DOI: 10.17223/19988605/45/4

Optimal estimate of the states of a generalized synchronous flow of second-order events under conditions of incomplete observability

The paper deals with a generalized synchronous flow second-order events accompanying random process A(t), which is an unob-servable piecewise constant process with two states S1 and S2 . Hereinafter, it is understood the i th state of process A(t) as the state S,, i = 1,2 . The duration of interval between the flow events at the i th state is determined by random variable ] = min(4,(1), 4(2)), where random variable 4(1) is distributed according to the law Fi(1)(t) = 1 -e-Ait, random variable 4(2) is distributed according to the law F(2)(t) = 1 - г~а,'; 4(1) and 4(2) are independent of each other, i = 1,2 . At the moment when a flow event occurs, process A(t) transits from the , th state to the j th either with probability p(1)(Ay. | A;) or with probability р(2)(Ay. | A) depending on the value of random variable ], i, j = 1,2 , i Ф j . At the moment when a flow event occurs, process A(t) stays in the i th state either with probability p(1)(A- | A) or with probability p(2)(A | A,) depending on the value of random variable i,, i = 1,2 . Wherein, p(1)(A · | A) + P(1)(A | A) = 1, P(2)(A | A) + P(2)(A | A) = 1, i, j = 1,2 , i Ф j . Thus, the duration of interval between the flow events in the i th state of process A(t) is a random variable with the exponential distribution function F(t) = 1 -A +а'i>t, i = 1,2 . In the sequel it is assumed that the state S1 (the first state) of random process A (t) takes place, if A(t) = A1, and the state S2 (the second state) of random process A (t) takes place, if A(t) = A2 (A1 > A2 > 0 ). We consider the situation, where each event registered at the moment tk generates the period of time T , called a dead time, during which other flow events are lost, and upon its completion, an occurring event also causes the period of non-observability of the flow. It is necessary to estimate the state of random process X (t) at the moment t, having a sample of the moments of occurrence of events t1, t2,... in the observed flow. The algorithm of optimal estimation for the states of a generalized synchronous flow of second-order events with unextendable dead time is as follows: 1) at the initial instant t0 = 0 a priori probability of the first state я of the process X(t) is calculated using explicit expression я =_X2p(1)(X| X2) + a2 P1(2)(X11X2)_. 1 XP® (X21X1) + aP® (X21X1) + X2P(1)(X11X2) + a2P<2)(A,11X2)' 2) k = 0, at any moment t of the interval (t0,t1) a probability w(X1 11) is computed according to formula •(X1 +a1 -X2 -a2)(t-tk) w(XJ tk + 0)e w(X 11) =----л-;-тггг, w(X1 110 + 0) = я,; (1|) 1 - w(X | h + 0) + w(X | h + 0)e"(X1+"1-X2-"2)(t-tk^ (110 ) 1; at the moment t1 calculations are made for determination w (X1111) = w(X1111 - 0) using the same formula; 3) k increases by 1; for k = 1a posteriori probability is recalculated according to formula w(X | tk + 0) = w /[(X2 + a) + w(X | tk - 0)(X + a - x2 - a2)], W = X^P(1)(X1 | X2) + a2P(2)(X1 | X2) + w(X1 | tk-0XXP°4X | X1) + ap(2)(X1 | XJ-X2PP(1)(X1 | X2)-aP(24X | X2)]; | ^ + 0) is the initial value for w (X1 11) at the next step; 4) k = 1, at any moment t of the half-interval (t1, t1 + T] a probability w (X1 11) is calculated according to w(X111) = я + [w(X11 tk + 0) -rcje"a('-'k >, a = x P(1)(X21X) + aP(2)(X IX) + X P(1)(X IX) + a2P(2)(X | X); here w(X111 = t1 + T) is the initial value for w (X1 11) at the next step of the algorithm; 5) k = 1, at any moment t of the (t1 + T,t2) a posteriori probability w(X1 11) is calculated according to _w(X I h + T)e"(t1+a1 -X2-a2)(t-tk-T)_, w( 11 ~ 1 - w(X 14 +T) + w(X 14 + T)e~(X1+a1 -X2-a2)(t-tk-T); w(X1 112) = w(X1 112 - 0) can be found using the same formula when t = t2; 6) the algorithm goes to step 3, after that steps 3-5 are repeated sequentially for k = 2 and so on. Simultaneously with the calculation process of probability w (X1 11) , the estimation of the flow state is made according to criterion of a posteriori probability maximum: if w(X111) > w(X211), then x(t) = X, else X(t) = X. The numerical results of described statistical experiments conducted on the simulation model demonstrate the possibility of sufficiently qualitative estimation of the states of a generalized synchronous flow of second-order events in conditions of a constant dead time.

Download file
Counter downloads: 167

Keywords

обобщенный синхронный поток событий второго порядка, состояние потока, оптимальная оценка состояний, непродлевающееся мертвое время, критерий максимума апостериорной вероятности, generalized synchronous flow of second-order events, flow state, optimal estimation of states, unextendable dead time, criterion of a posteriori probability maximum

Authors

NameOrganizationE-mail
Nezhel'skaya Lyudmila AlekseevnaTomsk State Universityludne@mail.ru
Sidorova Ekaterina FilippovnaTomsk State Universitykatusha_sidorova@mail.ru
Всего: 2

References

Дудин А.Н., Клименок В.И. Системы массового обслуживания с коррелированными потоками. Минск : Изд-во Белорус. гос. ун-та, 2000. 175 с.
Basharin G.P., Gaidamaka Yu.V., Samouylov K.E. Mathematical theory of teletraffic and its application to the analysis of multi service communication of next generation networks // Automatic Control and Computer Sciences. 2013. V. 47, No. 2. P. 62-69.
Cox D.R. The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables // Proc. of the Cambridge Philosophical Society. 1955. V. 51, No. 3. P. 433-441.
Kingman J.F.C. On doubly stochastic Poisson process // Proc. of the Cambridge Philosophical Society. 1964. V. 60, is. 4. P. 923-930.
Башарин Г.П., Кокотушкин В.А., Наумов В.А. О методе эквивалентных замен расчета фрагментов сетей связи. Ч. 1 // Изве стия АН СССР. Техническая кибернетика. 1979. № 6. С. 92-99.
Башарин Г.П., Кокотушкин В.А., Наумов В.А. О методе эквивалентных замен расчета фрагментов сетей связи. Ч. 2 // Изве стия АН СССР. Техническая кибернетика. 1980. № 1. С. 55-61.
Neuts M.F. A versatile Markovian point process // Journal of Applied Probability. 1979. V. 16. P. 764-779.
Lucantoni D.M. New results on the single server queue with a batch markovian arrival process // Communications in Statistics Stochastic Models. 1991. V. 7. P. 1-46.
Горцев А.М., Зуевич В.Л. Оптимальная оценка состояний асинхронного дважды стохастического потока событий с произ вольным числом состояний // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 2. С. 44-65.
Горцев А.М., Леонова М.А. Оптимальная оценка состояний обобщенного асинхронного дважды стохастического потока // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 1. С. 33-47.
Bakholdina M.A., Gortsev A.M. Optimal estimation of the states of modulated semisynchronous integrated flow of events in condition of its incomplete observability // Applied Mathematical Sciences. 2015. V. 9, No. 29-32. P. 1433-1451.
Gortsev A.M., Nezhel'skaya L.A. Estimation of parameters of synchronously alternating Poisson stream of events by the moment method // Telecommunications and Radio Engineering. 1996. V. 50, No. 1. P. 56-63.
Горцев А.М., Калягин А.А., Нежельская Л.А. Совместная плотность вероятностей длительности интервалов обобщенного полусинхронного потока событий при непродлевающемся мертвом времени // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2014. № 2 (27). С. 19-29.
Горцев А.М., Нежельская Л.А. Оценивание длительности мертвого времени и параметров синхронного альтернирующего потока событий // Вестник Томского государственного университета. 2003. № 6. С. 232-239.
Горцев А.М., Леонова М.А., Нежельская Л.А. Сравнение МП- и ММ-оценок длительности мертвого времени в обобщенном асинхронном потоке событий // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2013. № 4 (25). С. 32-42.
Нежельская Л.А., Сидорова Е.Ф. Алгоритм оптимального оценивания состояний обобщенного синхронного потока событий второго порядка // Труды Томского государственного университета. Серия физико-математическая. Томск : Издательский Дом ТГУ. 2017. Т. 301. С. 105-113.
Nezhelskaya L.A., Sidorova E.F. Optimal estimation of the states of synchronous generalized flow of events of the second order under its complete observability // Communications in Computer and Information Science. 2018. V. 912. P. 157-171.
Апанасович В.В., Коляда А.А., Чернявский А.Ф. Статистический анализ случайных потоков в физическом эксперименте. Минск : Университетское, 1988. 256 с.
Normey-Rico J.E. Control of dead-time process. London : Springer Verlag, 2007. 462 p.
Хазен Э.М. Методы оптимальных статистических решений и задачи оптимального управления. М. : Сов. радио, 1968. 256 с.
Левин Б.Р. Теоретические основы статистической радиотехники. М. : Сов. радио, 1968. 504 с.
Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М. : Наука, 1976. 576 с.
Соболь И.М. Численные методы Монте-Карло. М. : Наука, 1973. 312 c.
 Optimal estimate of the states of a generalized synchronous flow of second-order events under conditions of incomplete observability | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 45. DOI: 10.17223/19988605/45/4

Optimal estimate of the states of a generalized synchronous flow of second-order events under conditions of incomplete observability | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 45. DOI: 10.17223/19988605/45/4

Download full-text version
Counter downloads: 956