Parallel decomposition of a system of partial boolean functions | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 45. DOI: 10.17223/19988605/45/10

Parallel decomposition of a system of partial boolean functions

The problem of Boolean functions decomposition is to represent a given system of Boolean functions as a superposition of simpler Boolean functions. In fact, the implementation of a system of Boolean functions by logical unites, or the synthesis of a combinational circuit, is reduced to decomposition, in which the obtained superposition includes functions implemented by logical unites. The decomposition problem is considered in the following statement. Given a system of partial (incompletely specified) Boolean functions in the vector form, f(x) = (fi(x),fi(x), ...,fn(x)), where the components of the vector x = (xi, x2, ..., xn) are Boolean variables forming a set X. A superposition fx) < 9(gi(zi), g2(Z2), ..gk(zk)) must be found, where the components of the vector Zi, i = i, 2, ..k, are the variable in the set Zi сX and < denotes the realization relation, i.e., the values of the components of the vector function ф coincide with the values of the components of f everywhere they are specified. At that, the cardinality |Zi|, i = i, 2, k, must be restricted by a given value p, and k must be minimum and less than n. An approach to solving the problem that does not demand the sets Zi, Z2, Zk to be given is described. The approach uses the interval representation of a system of partial Boolean functions, i.e., in the form of a pair of ternary matrices, X, F, of dimension l x n and l x m, respectively. The columns of the matrix X correspond to the values xi, x2, ..., xn, and the columns of the matrix Fto the functionsfi(x),fi(x), ...,fn(x). A row of X gives an interval of Boolean space, and the corresponding row of F the function values at this interval. The symbol "-" in the i-th row and j-th column of F means that the i-th interval is not used to specify the function f(x). The rows of X and F have common numeration. The graphs Gx = (V, Ex) and Gf = (V, Ef) are considered, where V is the set of common numbers of rows of the matrices X and F, and Ex and Ef are the sets of pairs of orthogonal rows of the matrices X and F, respectively. A system of Boolean functions is given with matrices X and F correctly if Ef с Ex, i.e., Gf is a spanned subgraph of Gx. Every edge in Ex is assigned with the variables from the setХ = {xi, x2, ..., xn}, according to which the corresponding rows ofX are orthogonal. A complete bipartite subgraph (biclique) of Gx is assigned with the set of variables in X taken one by one from each edge of the biclique. A biclique is called admissible if the number of variables assigned to it is at most p, and it contains at least one edge in Ef. Let Bi, B2, ..., Bk be bicliques covering the set Ef. Any biclique Bi can be given by a pair of vertex sets (V/, Vi"). Every function gi(Zi) of the required superposition is specified by matrices Xi and Fi. The matrix Xi is the minor of X formed by the columns corresponding to the variables assigned to the biclique Bi. The matrix Fi consists of one column, where the element with number corresponding to the vertex in Vi'is 0, and the element with number corresponding to the vertex in Vi"is i (or vice versa). The element that does not correspond to any vertex in Vi'or in Vi "is "-". The vector function ф is given by matrices U and Ф. The matrix U consists of the columns that are the one-column matrices Fi, F2, Fk, and the matrix Ф coincide with F. Two methods for the considered problem are presented. The first method obtains an exact solution, i.e., the minimal number of blocks in a structural implementation of the given system of functions is ensured. This method is reduced to that first all maximal admissible bicliques are found in graph Gx, and then a shortest cover with them of the edges in Ef is obtained. The second method is heuristic one, it does not guarantee the minimal solution, but it allows solving the problem much faster in comparison with the first one. This method forms bicliques successively, that constitute a cover of the edges of graph Gf finally. The exact method can serve as a basis for developing other, heuristic methods, more applicable for practical tasks. The second method from the described ones is one of them. Moreover, the exact method can be used as an etalon for estimating the quality of solutions obtained by heuristic methods. The quality of the solution must be understood as its closeness to the optimal solution and simplicity of the obtained functions.

Download file
Counter downloads: 286

Keywords

система частичных булевых функций, троичная матрица, полный двудольный подграф, system of partial Boolean functions, ternary matrix, complete bipartite subgraph

Authors

NameOrganizationE-mail
Pottosin Yury VasilievichUnited Institute of Informatics Problems NAS of Belaruspott@newman.bas-net.by
Всего: 1

References

Hassoun S., Sasao T. Logic Synthesis and Verification. The Springer International Series in Engineering and Computer Science. Kluwer Academic Publishers, 2001. 472 p.
Perkowski M.A., Grygiel S. A Survey of Literature on Functional Decomposition, Version IV (Technical report). Portland : Portland State University, Department of Electrical Engineering, 1995. 188 p.
An improved functional decomposition method based on FAST and the method of removal and operation / F. Yu et al. // International Conference on System Science and Engineering (ICSSE), Dalian, China, Jun. 2012. P. 487-492.
Закревский А.Д., Поттосин Ю.В., Черемисинова Л.Д. Логические основы проектирования дискретных устройств. М. : Физматлит, 2007. 592 с.
Закревский А.Д., Перышкин А.Е. Параллельная декомпозиция системы слабо определенных булевых функций // Логиче ское проектирование. Минск : Ин-т техн. кибернетики НАН Беларуси, 2000. Вып. 5. С. 59-66.
Поттосин Ю.В., Шестаков Е.А. Табличные методы декомпозиции систем полностью определенных булевых функций // Минск : Белорусская наука, 2006. 327 с.
Бибило П.Н. Декомпозиция булевых функций на основе решения логических уравнений. Минск : Беларус. навука, 2009. 211 с.
Files C.M., Perkowski M.A. New mutivalued functional decomposition algorithms based on MDDs // IEEE Transactions on Com puter-Aided Design of Integrated Ciruits and Systems. 2000. V. 19, No. 9. P. 1081-1086.
Закревский А.Д. Комбинаторный поиск подходящих разбиений при декомпозиции булевых функций // Вестник Томского государственного университета. Приложение. 2006. № 18. С. 4-9.
Поттосин Ю.В., Шестаков Е.А. Применение аппарата покрытий троичных матриц для поиска разбиения множества аргументов при декомпозиции булевых функций // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2011. № 3 (16). С. 100-107.
Rawski M. Input variable partitioning method for decomposition-based logic synthesis targeted heterogeneous FPGAs // International Journal of Electronics and Telecommunications. 2012. V. 58, No. 1. P. 15-20.
Бибило П.Н. Применение диаграмм двоичного выбора при синтезе логический схем. Минск : Беларус. навука, 2014. 231 с.
Taghavi A.S., Pottosin Yu.V., Arasteh B. An input variable partitioning algorithm for functional decomposition of a system of Boolean functions based on the tabular method // Discrete Applied Mathematics. 2015. V. 185. P. 208-219.
Поттосин Ю.В., Шестаков Е.А. Декомпозиция системы частичных булевых функций с помощью покрытия графа полными двудольными подграфами // Новые информационные технологии в исследовании дискретных структур : доклады Второй всерос. конф. Екатеринбург : УрО РАН, 1998. С. 185-189.
Поттосин Ю.В. Метод многоблочной параллельной декомпозиции системы частичных булевых функций // Информатика. 2017. № 3 (55). С. 92-98.
Pottosina S., Pottosin Yu., Sedliak B. Finding maximal complete bipartite subgraphs in a graph // J. Applied Mathematics. 2008. V. i, No. i. P. 75-81.
 Parallel decomposition of a system of partial boolean functions | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 45. DOI: 10.17223/19988605/45/10

Parallel decomposition of a system of partial boolean functions | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2018. № 45. DOI: 10.17223/19988605/45/10

Download full-text version
Counter downloads: 958