Three-layer cellular automata model of the electrochemical oxidation of carbon Ketjen Black EC-600JD | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 46. DOI: 10.17223/19988605/46/4

Three-layer cellular automata model of the electrochemical oxidation of carbon Ketjen Black EC-600JD

In this paper, we consider the problem of constructing the cellular automaton model of the electrochemical oxidation of carbon. The carbon supported platinum catalyst is usually used for anode and cathode in the proton exchange membrane fuel cells which are now widely studied as alternative clean power sources with high energy efficiency. One of the main problems in the fuel cells commercialization is the low corrosion stability of carbon support which leads to detachment of large pieces of the support materials on which Pt is loaded. The mechanism of carbon corrosion, describing gradual carbon surface degradation through successive electrooxidation stages, was suggested by E.N. Gribov research group. Based on this mechanism, we construct the three-dimensional cellular automaton model of electrochemical oxidation of the carbon. According to the cellular automata approach, a space is represented as a three-dimensional Cartesian lattice L = {v = (xyz): x = 0, ...,Lx,y = 0, ..., Ly, z = 0, ..., Lz} consisting of cells. Each cell has a coordinate v e L and a state a e А. The admissible in the model states are А={0), C, COH, COOH, 0}, where C0 denotes a carbon atom inside the sample volume, C is a surface carbon atom, COH and COOH are surface carbon atoms with different oxidation degree, symbol 0 corresponds to a place without any atom. The states of cells are changed according to the transition rules which are defined by the mechanism of carbon corrosion. In this model the transition rule is a sequential composition of two operators Poxid and Psurf. The operator Poxid simulates the oxidation stages: 01(v) : {(C, v)} -- {(COH, v)}, 02(v) : {(COH, v)} --• {(COOH, v)}, 9зО) : {(COOH, v)} --• {(0, v)}. The operator Psurf finds new surface carbon atoms, i.e. the inner carbon atoms C0 that after application of Poxid have become the outer atoms C. Conductive carbon black "Ketjenblack" is currently widely used as a support for platinum catalyst in the proton exchange membrane fuel cells. So, this material is chosen for investigation in the current paper. The "Ketjenblack" consists of hollow nanospheres-granules of carbon atoms. The average diameter of carbon grains is ~ 30 nm. In the cellular automaton model, the granules are represented by spheres consisting of cells with states C0 and C. Each granule is formed by cells lying between two nested spheres with radii Rout = 15 cells and Rin = 11.3 cells. The radii are selected based on the characteristics of the "Ketjenblack". In the chemical experiments, the carbon sample is deposited on polished glass carbon rod and immersed in the electrolyte. So, in the cellular automaton model the carbon sample is supposed to be fixed from above. The carbon pieces unconnected with the upper atoms are considered as detached and disappear. To find the detached carbon atoms, all cells containing the atoms connected with upper atoms are marked by the "one scan connected component labeling technique". The atoms not marked as connected are removed, i.e., states of these cells are replaced by 0. During the simulation the following characteristics are calculated: the number of pure carbon atoms, the number of oxidized carbon atoms, the total number of surface atoms and the electrochemical capacity of the carbon sample. The results of computer simulation are compared with the experimental data. The shape of the electrochemical capacity curve obtained using the cellular automaton model is qualitatively similar to that experimentally measured. This result confirms the correctness of the cellular automaton model of carbon electrochemical oxidation.

Download file
Counter downloads: 107

Keywords

change-point detection, AR/ARCH, guaranteed parameter estimation, carbon corrosion, electrochemical oxidation, cellular automaton, computer simulation, коррозия углерода, электрохимическое окисление, компьютерное моделирование, клеточный автомат

Authors

NameOrganizationE-mail
Kireeva Anastasiya E.Institute of Computational Mathematics and Mathematical Geophysics SB RASkireeva@ssd.sscc.ru
Sabelfeld Karl K.Institute of Computational Mathematics and Mathematical Geophysics SB RASkarl@osmf.sscc.ru
Maltseva Natalia V.Boreskov Institute of Catalysis SB RASmaltseva.n.v@catalysis.ru
Gribov Eugenii N.Boreskov Institute of Catalysis SB RASgribov@catalysis.ru
Всего: 4

References

Сибирский суперкомпьютерный центр СО РАН : центр коллективного пользования. URL: http://www.sscc.icmmg.nsc.ru/ (дата обращения: 22.05.2018).
Abubaker A., Qahwaji R., Ipson S., Saleh M. One Scan Connected Component Labeling Technique // Signal Processing and Communications, ICSPC 2007. IEEE International Conference. 2007. P. 1283-1286.
Bandman O.L. Cellular Automata Composition Techniques for Spatial Dynamics Simulation // Simulating Complex Systems by Cellular Automata. Under-standing complex Systems / A.G. Hoekstra et al. (eds). Berlin, 2010. P. 81-115.
Meier J.C., Katsounaros I., Galeano C., Bongard H.J., Topalov A.A., Kostka A. et al. Stability investigations of electrocatalysts on the nanoscale // Energy Environ Sci. 2012. V. 5. P. 9319-9330.
Грибов Е.Н., Кузнецов А.Н., Головин В.А., Воропаев И.Н., Романенко А.В., Окунев А.Г. Деградация катализаторов Pt/C в условиях старт стоп циклирования // Электрохимия. 2014. Т. 50, № 7. С. 780-792.
Kireeva A.E., Sabelfeld K.K., Maltseva N.V., Gribov E.N. Parallel Implementation of Cellular Automaton Model of the Carbon Corrosion Under the Influence of the Electrochemical Oxidation // V. Malyshkin (ed.): PaCT 2017, LNCS. 2017. V. 10421. P. 205-214. DOI: 10.1007/978-3-319-62932-2 19.
Golovin V.A., Maltseva N.V., Gribov E.N., Okunev A.G. New nitrogen-containing carbon supports with improved corrosion resistance for proton exchange membrane fuel cells // International Journal of Hydrogen Energy. 2017. V. 42. P. 11159-11165. DOI: 10.1016/j.ijhydene.2017.02.117.
Meyers J.P., Darling R.M. Model of Carbon Corrosion in PEM Fuel Cells // Journal of The Electrochemical Society. 2006. V. 153, is. 8. P. A1432-A1442.
Gribov E.N., Maltseva N.V., Golovin V.A., Okunev A.G. A simple method forestimating the electrochemical stability of the carbon materials // International Journal of Hydrogen Energy. 2016. V. 41. P. 18207-18213.
Gallagher K.G., Fuller T.F. Kinetic model of the electrochemical oxidation of graphitic carbon in acidic environments // Phys. Chem. Chem. Phys. 2009. V. 11. P. 11557-11567.
Chen J., Siegel J.B., Matsuura T., Stefanopoulou A.G. Carbon Corrosion in PEM Fuel Cell Dead-Ended Anode Operations // Journal of The Electrochemical Society. 2011. V. 158 (9). P. B1164-B1174.
Pandy A., Yang Z., Gummalla M., Atrazhev V.V., Kuzminyh N.Yu., Vadim I.S., Burlatsky S.F. A Carbon Corrosion Model to Evaluate the Effect of Steady State and Transient Operation of a Polymer Electrolyte Membrane Fuel Cell // Journal of The Electrochemical Society. 2013. V. 160 (9). P. F972-F979. arXiv:1401.4285 [physics.chem-ph]. DOI: 10.1149/2.036309jes.
Shrestha S., Liu Y., Mustain W.E. Electrocatalytic Activity and Stability of Pt clusters on State-of-the-Art Supports: a Review // Catal. Rev. Sci. Eng. 2011. V. 53. P. 256-336.
Gribov E.N., Kuznetsov A.N., Voropaev I.N., Golovin V.A., Simonov P.A., Romanenko A.V. et al. Analysis of the corrosion kinetic of Pt/C catalysts prepared on different carbon supports under the "Start-Stop" cycling // Electrocatalysis. 2016. V. 7. P. 159-173.
Maltseva N.V., Golovin V.A., Chikunova Yu.O., Gribov E.N. Influence of the number of surface oxygen on the electrochemical capacity and stability of high surface Ketjen Black ES 600 DJ // Russ. J. Electrochem. 2018. V. 54, No. 5. P. 489-496. DOI: 10.7868/S0424857018050031.
Li L., Hu L., Li J., Wei Z. Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells // Nano Res. 2015. V. 8, is. 2. P. 418-440.
U.S. DRIVE Fuel Cell Tech Team: the Fuel Cells section of the FCTO Multi-Year Research, Development, and Demonstration Plan. URL: https://www.energy.gov/sites/prod/files/2016/06/f32/fcto_myrdd_fuel_cells_0.pdf (accesed: 22.05.2018).
Yoshida T., Kojima K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society // Electrochem. Soc. Interface. 2015. V. 24. P. 45.
Toffoli T., Margolus N. Cellular Automata Machines: a New Environment for Modeling, MIT Press, 1987. P. 259.
Bandman O.L. Mapping physical phenomena onto CA-models // AUT0MATA-2008 // Theory and Applications of Cellular Automata / A. Adamatzky, R. AlonsoSanz, A. Lawniczak, G.J. Martinez, K. Morita, T. Worsch (eds.). Luniver Press, 2008. P. 381-397.
 Three-layer cellular automata model of the electrochemical oxidation of carbon Ketjen Black EC-600JD | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 46. DOI:  10.17223/19988605/46/4

Three-layer cellular automata model of the electrochemical oxidation of carbon Ketjen Black EC-600JD | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 46. DOI: 10.17223/19988605/46/4

Download full-text version
Counter downloads: 413