Parameter estimation and change-point detection for process AR(p)/ARCH(q) with unknown parameters | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 46. DOI: 10.17223/19988605/46/5

Parameter estimation and change-point detection for process AR(p)/ARCH(q) with unknown parameters

Download file
Counter downloads: 146

Keywords

change-point detection, AR/ARCH, guaranteed parameter estimation

Authors

NameOrganizationE-mail
Vorobeychikov Sergey E.Tomsk State Universitysev@mail.tsu.ru
Burkatovskaya Yulia B.Tomsk Polytechnic Universitytracey@tpu.ru
Всего: 2

References

Lorden, G. (1971) Procedures for reacting to a change in distribution. Annals of Mathematical Statistics. 42. pp. 1897-1971.
Vorobeychikov, S., Burkatovskaya, Yu. & Sergeeva, E. (2016) TAR(p)/ARCH(1) process with an arbitrary threshold: guaranteed parameter estimation and change-point detection. IAENG International Journal of Applied Mathematics. 469(3). pp. 353-366.
Shiryaev, A. (2016) Probability. 3rd ed. New York: Springer-Verlag.
Burkatovskaya, Yu.B., Vorobeychikov, S.E. & Sergeeva, E.E. (2012) Asymptotic properties of parameter estimation and change-point detection procedures for a generalized autoregressive process with conditional heteroscedasticity. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel'naya tekhnika i informatika - Tomsk State University Journal of Control and Computer Science. 2(19). pp. 59-71. (In Russian).
Burkatovskaya, Yu.B. & Vorobeychikov, S.E. (2011) Change point detection of autoregressive process with unknown parameters. Preprints of the 18th IFAC World Congress. 26 August - 2 September, 2011. pp. 13215-13220.
Konev, V. & Dmitrienko, A. (1994) On guaranteed estimation of autoregression parameters when the noise variance is unknown. Automatics and Remote Control. 2. pp. 87-99.
Martins, L.F. & Rodrigues, P.M.M. (2014) Testing for persistence change in fractionally integrated models: An application to world inflation rates. Computational Statistics and Data Analysis. 76. pp. 502-522. DOI: 10.1016/j.csda.2012.07.021
Kirch, C. & Tadjuidje, K.J. (2015) On the use of estimating functions in monitoring time series for change points. Journal of Statis tical Planning and Inference. 161. pp. 25-49. DOI: 10.1016/j.jspi.2014.12.009
Bardet, J.-M. & Kengnea, W. (2014) Monitoring procedure for parameter change in causal time series. Journal of Multivariate Analysis. 125. pp. 204-221. DOI: 10.1016/j.jmva.2013.12.004
Prado, R. (2013) Sequential estimation of mixtures of structured autoregressive models. Computational Statistics and Data Analysis. pp. 58-70. DOI: 10.1016/j.csda.2011.03.017
Fried, R. (2012) On the online estimation of local constant volatilities. Computational Statistics and Data Analysis. 56. pp. 3080 3090.
Leiva, V., Saulo, H., Leao, J. & Marchanta, C. (2014) A family of autoregressive conditional duration models applied to financial data. Computational Statistics and Data Analysis. 79. pp. 175-191. DOI: 10.1016/j.csda.2014.05.016
 Parameter estimation and change-point detection for process AR(p)/ARCH(q) with unknown parameters | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 46. DOI:  10.17223/19988605/46/5

Parameter estimation and change-point detection for process AR(p)/ARCH(q) with unknown parameters | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 46. DOI: 10.17223/19988605/46/5

Download full-text version
Counter downloads: 413