Optimization of the parameters of the stochastic model of inventory control | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 46. DOI: 10.17223/19988605/46/7

Optimization of the parameters of the stochastic model of inventory control

The following model of inventory control is considered: 1. The level of the stock of the product at the initial moment t = 0 is equal to J0. 2. Change in the level of stocks occurs instantly. 3. Customer requests form a simple events flow of intensity X. 4. The values of the applications are independent and have the same distribution with the probability density f( x) and mathematical expectation a. 5. Replenishment of stocks occurs at regular intervals of the length T up to the level J0. It is assumed that the cost of storing a unit of product per unit of time is equal to c1, the penalty for the deficit of a unit of product per unit of time is equal to c2, the cost of supplying of x units of the product is cjr + c4. The costs in this model are sufficient to investigate over a period of time (0, T). Let C(t) be the cost of storing the product and the penalties for its deficit at a time interval (0, t), 0 < t < T. Then the total cost of the time period (0, T), taking into account the cost of replenishment, is equal to Cm = C ( k) + Сз( J0 - J ( k)) + c,. The mathematical expectation of a quantity Cfull is considered as a cost function. It is required to find the value J0 at which the cost function takes the smallest value. It is not difficult to show that the mathematical expectation of the stock level on a time interval (0, t), 0 < t < T has the form M (J(t)) = J -Xat , so the cost function takes the form M(Cfull) = M(C(T)) + cXaT + c, . This means that the cost function is minimal if the value M(C(T)) is minimal. It is shown that the probability distribution function of the stock level P(J(t) < x) satisfies the integro-differential equation Я +ОД -P(J(t) < x) = -XP(J(t) < x) + X j P(J(t) < v + x)f (v)dv St 0 in the band 0 < t < T, - ю < x < ю, and the initial condition 1, если x > J0, P(J (0) < x) = < 0, если x < J0. The mathematical expectation of storage costs and penalties on a time interval (0, T) is obtained M(C(k)) = jq(J0 -Xat) - (q + c) j xm(x,t)dxjdt, where u(x, t) is the distribution density of the stock level. In the case of the exponential distribution of the quantity of requests, the density distribution of the inventory level is obtained, and hence the average cost, the minimum average cost and the optimal value of the initial inventory level J0.

Download file
Counter downloads: 125

Keywords

optimization of the inventory control system, integro-differential equation, cost function, Poisson process, stochastic model of inventory control, оптимизация системы управления запасами, интегро-дифференциальное уравнение, функция затрат, пуассоновский поток, стохастическая модель управления запасами

Authors

NameOrganizationE-mail
Kapustin Evgeny V.Tomsk State University of Control Systems and Radioelectronicskapustin_ev@mail.ru
Shkurkin Alexey S.Tomsk State Universityshkurkin@mail.ru
Всего: 2

References

Капустин Е.В., Мухаметсафина Ю.В. Модель управления запасами со случайным потоком заявок от потребителей // Научное творчество молодежи. Математика. Информатика : материалы XX Всерос. науч.-практ. конф. (28-29 апреля 2016 г.). Томск : Изд-во Том. ун-та, 2016. Ч. 1. С.70-74.
Axsater S. Inventory Control. Cham : Springer, 2015. 268 p.
Rossi R., Prestwich S., Armagan T.S., Hnich, B. Replenishment planning for stochastic inventory systems with shortage cost // Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems : 4th International Conference, CPAIOR 2007, Brussels, Belgium, May 23-26, 2007 : Proceedings / ed. P. Van Hentenryck; L. Wolsey. LNCS Sprin-ger-Verlag GmbH, 2007. Vol. 4510. P. 229-243.
Мандель А.С., Семенов Д.А. Адаптивные алгоритмы оценки параметров оптимальных стратегий управления запасами при ограниченном дефиците // Автоматика и телемеханика. 2008. № 6. С. 117-128.
Krishnamoorthy A., Lakshmy B., Manikandan R. A survey on inventory models with positive service time // OPSEARCH. 2011. Vol. 48 (2). P. 153-169.
Khouja M. The single-period (news-vendor) problem: literature review and suggestions for future research // Omega. 1999. Vol. 27, No. 5. P. 537-553.
Handbook of EOQ Inventory Problems: Stochastic and Deterministic Models and Applications / Ts.-M. Choi (ed.). New York : Springer, 2014. 281 p.
Porteus E.L. Foundations of Stochastic Inventory Theory. Stanford, CA : Stanford University Press, 2002. 320 p.
Zipkin P.H. Foundations of inventory management. Boston : McGraw-Hill, 2000. 514 p.
Silver E.A. Inventory management and production planning and scheduling. New York : Wiley, 1998. 754 p.
Бродецкий Г.Л. Управление запасами. М. : Эксмо, 2008. 352 с.
Рыжиков Ю.И. Теория очередей и управление запасами. СПб. : Питер, 2001. 308 с.
Лотоцкий В.А., Мандель А.С. Модели и методы управления запасами. М. : Наука, 1991. 189 с.
Хедли Дж., Уайтин Т. Анализ систем управления запасами. М. : Наука, 1969. 512 с.
Черчмен У., Алоф Р., Арноф Л. Введение в исследование операций. М. : Наука, 1966. 488 с.
Прабху А. Методы теории массового обслуживания и управления запасами : пер. с англ. М. : Машиностроение, 1969. 324 с.
 Optimization of the parameters of the stochastic model of inventory control | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 46. DOI:  10.17223/19988605/46/7

Optimization of the parameters of the stochastic model of inventory control | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 46. DOI: 10.17223/19988605/46/7

Download full-text version
Counter downloads: 413