Model predictive control for discrete-time systems with serially correlated parameters and multiplicative and additive noises under constraints
Let the control object is described by the equation: (1) where x(i)el"* is the vector of state; u(k)eMn' is the vector of control; r|(£)eR?is the stochastic vector; A^k) eR"'y"', В-х(к'),к]еШ"'Уп" = Цц(к),к] e Ми»хи» . All of the elements of Bi [{k), k] (z = 0, 1, ..., n), D[r(k), k] are assumed to be linear functions of r| (k% {v(k) eK";4=0, 1,...}, {w(k) e К"" ; к = 0, 1, ...} are white noise vectors with zero mean and unique co-variance matrix, E{w(k)vT(s)} = 0, i?{r|(fc)vT(5)} = 0, i?{r|(fc)wT(.s)} =0 for all k, s. Let F = be the complete filtration with a-field generated by the {t|(,s): 5 = 0, 1,2, ...,k} that models the flow of in formation to time k. We allow the parameters n(k) to be serially correlated. Let us assume that we know the first- and second-order conditional moments for the stochastic vector n(k) about Fk : E {л(к + i) / Fk} = n(k + i), E {n(k + iW (k + j) / Fk) = % (k),(k = 0,1,2,...),(i, j = 0,1,2,..., d). We impose the following inequality constraints on the control inputs (element-wise inequality): umm(k) < S(k)u(k) < umsx(ky,S(k) S R™ ;umin(k),umsx(k) s R*. (2) For control of system (1), we synthesize the strategies with a predictive control model. At each step k we minimize the following criterion with a receding horizon m m J(k + m / k) = Z E{x (k + i)R (k + i)x(k + i) / x(k), F} ~Z E{x (k + i) / x(k), F (k + i)E{x(k + i) / x(k), F} - (3) i=1 i=1 m m-1 R(k + i)E{x(k + i) / x(k),F} + Z E{uT (k + i / k)R(k + i)u(k + i / k) / x(k), F}, i=1 i=0 on trajectories of system (1) over the sequence of predictive controls u(k/k), ..., u(k + m - 1/k) dependent on the system state x(k) and information up to time k Fk , under constraints (2); where R1(k + i) > 0,R2(k + i) > 0,R(k + i) > 0 are given symmetric weight matrices of corresponding dimensions; R3 (k + i) is a given vector of corresponding dimension; m is the prediction horizon. Different cost functions can be obtained from criterion (3) after setting the coefficients Ri(k + i), R2(k + i), and R3(k + i) to some appropriate values. Problem 1. Taking R2(k + i) = 0, we have the MPC problem with quadratic criterion. Problem 2. Let system (1) have a scalar output y(k) = L(k)x(k), where L(k) is a vector of appropriate dimension. Taking R (k + i) = R (k + i) = |j(k + i)L (k + i)L(k + i), R (k + i) = X(k + i)L(k + i), (i = 1, m), where ^(k + i) > 0, X(k + i) > 0 are scalar values, we have a mean-variance optimization problem.
Keywords
управление с прогнозированием, мультипликативные шумы, сериально коррелированные параметры, ограничения, model predictive control, serially correlated parameters, multiplicative noises, constrainsAuthors
Name | Organization | |
Dombrovskii Vladimir V. | Tomsk State University | dombrovs@ef.tsu.ru |
Pashinskaya Tatiana Yu. | Tomsk State University | tatyana.obedko@mail.ru |
References

Model predictive control for discrete-time systems with serially correlated parameters and multiplicative and additive noises under constraints | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 47. DOI: 10.17223/19988605/47/1