Computational aspects of probabilistic extensions
In this article we propose a new approach to computing of functions with random arguments. Approach based on the idea of dimension reduction by to calculating some integrals and the application of numerical probability analysis. We apply one of the basic concepts of numerical probabilistic analysis as the probabilistic extension to computing a function with random arguments. To implement this technique, a new method based on parallel recursive calculations is proposed. Numerical examples are presented demonstrating the effectiveness of the proposed approach.
Keywords
computational probabilistic analysis,
probabilistic extensions,
non-Monte Carlo methods,
random boundary value problem,
вычислительный вероятностный анализ,
вероятностные расширения,
не Монте-Карло методы,
случайные краевые задачиAuthors
Dobronets Boris S. | Siberian Federal University | BDobronets@yandex.ru |
Popova Olga A. | Siberian Federal University | OlgaArc@yandex.ru |
Всего: 2
References
Rocquigny, E. (2012) Modelling Under Risk and Uncertainty: An Introduction to Statistical, Phenomenological and Computational Methods. Wiley Series in Probability and Statistics. John Wiley & Sons.
Springer, M.D. (1979) The Algebra of Random Variables. New York; Chichester; Brisbane: John Wiley & Sons.
Gerasimov, V.A., Dobronets, B.S. & Shustrov M.Yu. (1991) Numerical operations of histogram arithmetic and their applications. Automation and Remote Control. 52(2). pp. 208-212.
Williamson, R. & Downs, T. (1990) Probabilistic arithmetic i: numerical methods for calculating convolutions and dependency bounds. International Journal of Approximate Reasoning. 4(2). pp. 89-158. DOI: 10.1016/0888-613X(90)90022-T
Li, W. & Hym, J. (2004) Computer arithmetic for probability distribution variables. Reliability Engineering and System Safety. 85(1-3). pp. 191-209. DOI: 10.1016/j.ress.2004.03.012
Jaroszewicz, S. & Korzen, M. (2012) Arithmetic operations on independent random variables: a numerical approach. SIAM J. Sci. Comput. 34(3). pp. A1241-A1265. DOI: 10.1137/110839680
Dobronets, B.S. & Popova, O.A. (2014) Numerical probabilistic analysis under aleatory and epistemic uncertainty. Reliable Computing. 19. pp. 274-289.
Dobronets, B. & Popova, O. (2016) Numerical Probabilistic Approach for Optimization Problems. Scientific Computing, Computer Arithmetic, and Validated Numerics. Lecture Notes in Computer Science. Vol. 9553. Springer International Publishing, Cham. pp. 43-53.
Dobronets, B.S. & Popova, O.A. (2017) Improving the accuracy of the probability density function estimation. Journal of Siberian Federal University, Mathematics and Physics. 10(1). pp. 16-21. DOI: 10.17516/1997-1397-2017-10-1-16-21
Dobronets, B.S. & Popova, O.A. (2018) Piecewise Polynomial Aggregation as Preprocessing for Data Numerical Modeling. IOP Conf. Series: Journal of Physics: Conf. Series. 1015. DOI:10.1088/1742-6596/1015/3/032028
Dobronets, B.S. & Popova, O.A. (2018) Improving reliability of aggregation, numerical simulation and analysis of complex systems by empirical data. IOP Conf. Series: Materials Science and Engineering. 354. D0I:10.1088/1757-899X/354/1/012006
Popova, O.A. (2019) Using Richardson extrapolation to improve the accuracy of procesing and analyzing empirical data. Measurement Techniques. 2. pp. 18-22.
Mikhailov, G.A. & Voitishek, A.V. (2018) Statisticheskoe modelirovanie: metodMonte-Karlo [Statistical modeling. Monte Carlo methods]. Moscow: Yurait.
Soong, T.T. (1973) Random Differential Equations in Science and Engineering. New York and London: Academic Press.