Multiwavelets of odd degree, orthogonal to polynomials informatics and programming | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 47. DOI: 10.17223/19988605/47/10

Multiwavelets of odd degree, orthogonal to polynomials informatics and programming

For the space of Hermitian splines of 2r + 1-st degree of a kind SL (x)= Z hk Z CL'k NL k (x), a < x < b, where the coefficients k=0 i=0 ' C,L,k, k = 0, ..., r, are values and corresponding derivatives of the approximated function in the knots of uniform net AL: ui = a + (b - a) i / 2L, i = 0, 1,., 2L, L > 0, and basic functions are NL k (uj) = ЦЪ1 к,l = 0,1,...,r , with the centers in integers, it is offered to use as wavelets the functions MLi,k (x), k = 0, 1, r Vi, with the centers in odd integers, the linear combinations of basic Hermitian splines with the grid Ai+1, that are orthogonal to polynomials of2r+ 1-st order ^M^k(x)xmdx = 0, £ = 0,l,...,rVz (от = 0,1,. ..,2r + 1) . If the corresponding spline-coefficients are collected in the vector, CL = [Cq'0, Cq д,..., Cq'r, C{"°,..., C^f] , and the corresponding wavelet-coefficients - in the vector, DL ^D^'0, D^'1,..., ,..., Д^"/] j then with use of designations for block matrices the formulas for evaluation of spline-coefficients CL-1 on the thinned grid AL-1 and wavelet-coefficients D-1 in the form of the solution of sparse system of linear algebraic equations are proved: = CL. cL-1 [PL | Q ] Here blocks of the matrix PL are composed from coefficients of the scale relations for basic splines and blocks of the matrix QL are composed from coefficients of the decomposition for basic wavelets MLi,k (x). For the purpose of using of the rarefied structure of a matrix [PL | QL] there is offered to make it block tri-diagonal, having changed an order of unknowns so that blocks of matrixes PL and QL been alternated, to be able to apply an algorithm of a block matrix sweeping to the solution of the received system. The problem of stability of algorithm of multiwavelets-transformation on big grids by means of observation of behavior of condition numbers in Euclidean norm of sweeping matrixes is investigated. The numerical example of approximation and compression of data for a case of Hermitian splines of the 7th degree is given.

Download file
Counter downloads: 170

Keywords

эрмитовы сплайны, мультивейвлеты, ортогональность многочленам, Hermitian splines, multiwavelets, orthogonal to polynomials

Authors

NameOrganizationE-mail
Shumilov Boris M.Tomsk State University of Architecture and Buildingsbm05@yandex.ru
Всего: 1

References

Добеши И. Десять лекций по вейвлетам : пер. с англ. Ижевск : Регулярная и хаотическая динамика, 2001. 332 с.
Чуи Ч. Введение в вейвлеты : пер. с англ. М. : Мир, 2001. 412 с.
Новиков И.Я., Протасов В.Ю., Скопина М.А. Теория всплесков. М. : Физматлит, 2006. 616 с.
Strela V. Multiwavelets: regularity, orthogonality and symmetry via two-scale similarity transform // Stud. Appl. Math. 1997. V. 98, No. 4. P. 335-354.
Strela V., Heller P.N., Strang G., Topivala P., Heil C. The application of multiwavelet filterbanks to image processing // IEEE Trans. Signal Processing. 1999. V. 8, No. 4. P. 548-563.
Warming R., Beam R. Discrete multiresolution analysis using Hermite interpolation: Biorthogonal multiwavelets // SIAM J. Sci. Comp. 2000. V. 22, No. 1. P. 269-317.
Dahmen W., Han B., Jia R.-Q., Kunoth A. Biorthogonal multiwavelets on the interval: cubic Hermite splines // Constr. Approx. 2000. V. 16. P. 221-259.
Han B. Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets // J. Approxim. Theory. 2001. V. 110. P. 18-53.
Koro K., Abe K. Non-orthogonal spline wavelets for boundary element analysis // Engineering Analysis with Boundary Elements. 2001. V. 25. P. 149-164.
Han B., Kwon S.-G., Park S.S. Riesz multiwavelet bases // Appl. Comput. Harmon. Anal. 2006. V. 20. P. 161-183.
Завьялов Ю.С., Квасов Б.И., Мирошниченко В. Л. Методы сплайн-функций. М. : Наука, 1980. 352 с.
Шумилов Б.М. Мультивейвлеты эрмитовых сплайнов третьей степени, ортогональные кубическим многочленам // Математическое моделирование. 2013. № 4. С. 17-28.
Strang G., Strela V. Short wavelets and matrix dilation equations // IEEE Trans. Signal Processing. 1995. V. 43, No. 1. P. 108-115.
Столниц Э., ДеРоуз Т., Салезин Д. Вейвлеты в компьютерной графике : пер. с англ. Ижевск : Регулярная и хаотическая динамика, 2002. 272 с.
Шумилов Б.М. Алгоритм матричной прогонки вычисления мультивейвлетов нечетной степени, ортогональных многочленам // Автометрия. 2015. Т. 51, № 2. С. 83-92.
Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М. : Наука, 1978. 591 с.
Васильева Е.А. Достаточные условия корректности метода матричной прогонки // Известия КГТУ. 2011. № 20. С. 103-108.
Schneider A. Biorthogonal cubic Hermite spline multiwavelets on the interval with complementary boundary conditions // Results in Mathematics. 2009. V. 53, is. 3. P. 407-416.
Cerna D., Finek V. Construction of optimally conditioned cubic spline wavelets on the interval // Adv. Comput. Math. 2011. V. 34. P. 519-552.
 Multiwavelets of odd degree, orthogonal to polynomials informatics and programming | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 47. DOI: 10.17223/19988605/47/10

Multiwavelets of odd degree, orthogonal to polynomials informatics and programming | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 47. DOI: 10.17223/19988605/47/10

Download full-text version
Counter downloads: 731