Multiwavelets of odd degree, orthogonal to polynomials informatics and programming
For the space of Hermitian splines of 2r + 1-st degree of a kind SL (x)= Z hk Z CL'k NL k (x), a < x < b, where the coefficients k=0 i=0 ' C,L,k, k = 0, ..., r, are values and corresponding derivatives of the approximated function in the knots of uniform net AL: ui = a + (b - a) i / 2L, i = 0, 1,., 2L, L > 0, and basic functions are NL k (uj) = ЦЪ1 к,l = 0,1,...,r , with the centers in integers, it is offered to use as wavelets the functions MLi,k (x), k = 0, 1, r Vi, with the centers in odd integers, the linear combinations of basic Hermitian splines with the grid Ai+1, that are orthogonal to polynomials of2r+ 1-st order ^M^k(x)xmdx = 0, £ = 0,l,...,rVz (от = 0,1,. ..,2r + 1) . If the corresponding spline-coefficients are collected in the vector, CL = [Cq'0, Cq д,..., Cq'r, C{"°,..., C^f] , and the corresponding wavelet-coefficients - in the vector, DL ^D^'0, D^'1,..., ,..., Д^"/] j then with use of designations for block matrices the formulas for evaluation of spline-coefficients CL-1 on the thinned grid AL-1 and wavelet-coefficients D-1 in the form of the solution of sparse system of linear algebraic equations are proved: = CL. cL-1 [PL | Q ] Here blocks of the matrix PL are composed from coefficients of the scale relations for basic splines and blocks of the matrix QL are composed from coefficients of the decomposition for basic wavelets MLi,k (x). For the purpose of using of the rarefied structure of a matrix [PL | QL] there is offered to make it block tri-diagonal, having changed an order of unknowns so that blocks of matrixes PL and QL been alternated, to be able to apply an algorithm of a block matrix sweeping to the solution of the received system. The problem of stability of algorithm of multiwavelets-transformation on big grids by means of observation of behavior of condition numbers in Euclidean norm of sweeping matrixes is investigated. The numerical example of approximation and compression of data for a case of Hermitian splines of the 7th degree is given.
Keywords
эрмитовы сплайны, мультивейвлеты, ортогональность многочленам, Hermitian splines, multiwavelets, orthogonal to polynomialsAuthors
Name | Organization | |
Shumilov Boris M. | Tomsk State University of Architecture and Building | sbm05@yandex.ru |
References

Multiwavelets of odd degree, orthogonal to polynomials informatics and programming | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 47. DOI: 10.17223/19988605/47/10