Deriving tests for digital circuits at lower and higher abstraction levels | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 47. DOI: 10.17223/19988605/47/13

Deriving tests for digital circuits at lower and higher abstraction levels

In this paper, we propose an approach for deriving complete test suites for logic circuits, which detect both low-level faults and high-level faults. For deriving low level tests, we consider logic circuits described in BLIF format and a mutation approach is used for the test derivation. First, logic circuit mutants with respect to considered faults are derived and test sequences, for distinguishing the reference and mutated circuits are then constructed (if such a sequence exists). For deriving a distinguishing sequence, a logic synthesis and verification software tool called ABC is used. Three types of faults in logic circuits are considered: those are Single Stuck-At Faults (SSF) considered in many references. We also consider Single Bridge Faults (SBF), which occur when one of the intermediate inputs becomes wrongly wired. The last considered faults type is a Hardly Detectable Faults (HDF) when a single gate of the circuit is replaced with another gate that has slightly different behavior. Test suite is derived by covering all such mutants. For deriving higher level tests, we use a finite state machine (FSM) and according to our experiments test suites derived based on logic circuits cover 64% of transitions of the corresponding FSM on average. We propose to complete logic circuit based test suites with sequences, which allow to cover previously uncovered transitions of the corresponding FSM and specify the fault model for which augmented test suites are complete. Correspondingly, augmented tests are complete with respect to the mutations of a logic circuit as well as with respect to output faults of a higher-level FSM model.

Download file
Counter downloads: 225

Keywords

последовательностная цифровая система, конечный автомат, тестовые последовательности, мутационный подход, обход графа переходов, sequential circuits, finite state machines, test sequences, mutation approach, transition tour

Authors

NameOrganizationE-mail
Laputenko Andrey V.Tomsk State Universitylaputenko.av@gmail.com
Vinarskii Evgenii M.Lomonosov Moscow State Universityvinevg2015@gmail.com
Всего: 2

References

Vasilevskii M. Failure Diagnosis of Automata // Kibernetika. 1973. V. 4. P. 98-108.
Пархоменко П.П., Согомонян Е.С. Основы технической диагностики. М. м: Энергоиздат, 1981. 319 с.
Яблонский С.В. Некоторые вопросы надежности и контроля управляющих систем // Математические вопросы киберне тики. М. : Наука, 1988. Вып. 1. С. 5-25.
Матросова А.Ю., Останин С.А., Бухаров А.В., Кириенко И.Е. Поиск всех тестовых наборов для неисправности логиче ской схемы и представление их ROBDD-графом // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2014. № 2 (27). C. 82-89.
Кушик Н.Г., Лопез Х.Е., Евтушенко Н.В. Исследование корреляции тестовых последовательностей при проверке надеж ности функционирования цифровых компонентов физических систем // Известия вузов. Физика. 2016. Т. 59, № 8. С. 134-139.
Smolov S.A., Lopez J., Kushik N., Yevtushenko N., Chupilko M.M., Kamkin A.S. Testing logic circuits at different abstraction levels: an experimental evaluation // Proc. of the IEEE East-West Design & Test Symposium. EWDTS. Yerevan, 2016. P. 189-192.
Vinarskii E., Laputenko A., Lopez J., Kushik N. Testing Digital Circuits: Studying the Increment of the Number of States and Estimating the Fault Coverage // EDM 2018 : Proc. of the 19th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, 2018. P. 220-224.
Бибило П.Н. Основы языка VHDL : учеб. пособие. М. : ЛИБРОКОМ, 2016. 328 с.
Lopez J., Vinarsky E., Laputenko A. On the Fault Coverage of High-level Test Derivation Methods for Digital Circuits // EDM 2017 : Proc. of the 18th International Conference on Micro/Nanotechnologies and Electron Devices, 2017. P. 184-189.
Лапутенко А.В., Лопез Х.Е., Евтушенко Н.В. Обработка экспериментальных данных при верификации компонентов физических систем: оценка качества тестовых последовательностей // Известия вузов. Физика. 2017. Т. 60, № 11. С. 146-151.
Brayton R., Mishchenko A. ABC: An Academic Industrial-Strength Verification Tool // Computer Aided Verification : Proc. of the 22nd International Conference, 2010. P. 24-40.
Прокопенко С.А. Минимизация проверяющих тестов для систем логического управления методами теории конечных автоматов : дис.. канд. техн. наук. Томск, 2000. 117 с.
Shabaldina N., Gromov M. FSMTest-1.0: a manual for researches // Proc. of IEEE East-West Design & Test Symposium (EWDTS'2015). Batumi. Georgia. September 26-29, 2015. P. 216-219.
Wall L., Christiansen T., Orwant J. Programming Perl. 3nd ed. Sebastopol, CA : O'Reilly & Associates, Inc, 2000. 1104 p.
 Deriving tests for digital circuits at lower and higher abstraction levels | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 47. DOI: 10.17223/19988605/47/13

Deriving tests for digital circuits at lower and higher abstraction levels | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 47. DOI: 10.17223/19988605/47/13

Download full-text version
Counter downloads: 731