Optimal predictive control strategies for systems with random parameters described by multidimensional Markov switching regression model | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 48. DOI: 10.17223/19988605/48/1

Optimal predictive control strategies for systems with random parameters described by multidimensional Markov switching regression model

We consider a class of discrete stochastic systems with parameters whose evolution is described by the multidimensional regression equation with Markov jumps. The dynamics of exogenous factors is described by a vector autoregressive model with Markov switching of regimes of order p (MS-VAR (p) model). The optimal strategies for predictive control have been synthesized taking into account explicit restrictions on control variables according to a generalized criterion, which is a linear combination; a) the expected values of quadratic forms in state and control; b) the quadratic form of the expected values of the states of the system; c) linear part - the expected value of the state of the system.

Download file
Counter downloads: 185

Keywords

стохастические системы, марковские скачки, многомерная модель регрессии, прогнозирующее управление, ограничения, stochastic systems, Markov jumps, multidimensional regression, model predictive control, constrains

Authors

NameOrganizationE-mail
Dombrovskii Vladimir V.Tomsk State Universitydombrovs@ef.tsu.ru
Pashinskaya Tatiana Yu.Tomsk State Universitytatyana.obedko@mail.ru
Всего: 2

References

Costa O.L.V., Fragoso M.D., Marques R.P. Discrete-time Markov jump linear systems. New York : Springer, 2005. 286 p.
Dombrovskii V., Obedko T. Feedback predictive control strategies for investment in the financial market with serially correlated returns subject to constraints and trading costs // Optimal control applications and methods. 2017. V. 38, No. 6. P. 908-921.
Mayne D.Q. Model predictive control: Recent developments and future promise // Automatica. 2014. V. 50, No.12. P. 2967-2986.
Farina M., Giulioni L., Scattolini R. Stochastic model predictive control with chance constraints : a review // Journal of Process Control. 2016. V. 44, No. 8. P. 53-67.
Домбровский В.В., Объедко Т.Ю. Управление с прогнозированием системами с марковскими скачками при ограничениях и применение к оптимизации инвестиционного портфеля // Автоматика и телемеханика. 2011. № 5. С. 96-112.
Henandez-Medjias M.A., Sala A., Querol A., Arino C. Multiple-Horizon predictive control for Markov/switched linear systems // IFAC-PapersOnLine. 2015. V. 48 (23). P. 230-235.
Tonne J., Jilg M., Stursberg O. Constrained Model Predictive Control of High Dimensional Jump Markov Linear Systems // American Control Conference. Palmer House Hilton. July 1-3, Chicago, IL. 2015. P. 2993-2998.
Chitraganti S., Aberkane S., Aubrun C., Valencia-Palomo G., Dragan V. On control of discrete-time state-dependent jump linear systems with probabilistic constraints: a receding horizon approach // Systems & Control Letters. 2014. V. 74. P. 81-89.
Lu J., Xi Y., Li D. Stochastic model predictive control for probabilistically constrained Markovian jump linear systems with additive disturbance // Int. J. Robust Nonlinear Control. 2017. P. 1-15.
Sala A., Henandez-Medjias M.A., Arino C. Stable receding-horizon scenario predictive control for Markov-jump linear systems // Automatica. 2017. V. 86. P. 121-128.
Patrinos P., Soparasakis P., Sarimveis H., Bemporad A. Stochastic model predictive control for constrained discrete-time Markovian switching systems // Automatica. 2014. V. 50, No. 10. P. 2504-2514.
Dombrovskii V.V., Obyedko T.Yu., Samorodova M. Model predictive control of constrained Markovian jump nonlinear stochastic systems and portfolio optimization under market frictions // Automatica. 2018. V. 87, No. 1. P. 61-68.
Домбровский В.В., Пашинская Т.Ю. Прогнозирующее управление системами с марковскими скачками и авторегрессионным мультипликативным шумом с марковским переключением режимов // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2018. № 44. С. 4-9.
Krolzig H.-M. Markov Switching Vector Autoregressions. Modelling, Statistical Inference and Application to Business Cycle Analysis. Berlin : Springer, 1997. 357 p.
Elliott R.J., Aggoun L., Moore J.B. Hidden Markov models: Estimation and control. Berlin, Heidelberg, New York : Springer, 1995. 382 p.
 Optimal predictive control strategies for systems with random parameters described by multidimensional Markov switching regression model | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 48. DOI: 10.17223/19988605/48/1

Optimal predictive control strategies for systems with random parameters described by multidimensional Markov switching regression model | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 48. DOI: 10.17223/19988605/48/1

Download full-text version
Counter downloads: 630