Optimal predictive control strategies for systems with random parameters described by multidimensional Markov switching regression model
We consider a class of discrete stochastic systems with parameters whose evolution is described by the multidimensional regression equation with Markov jumps. The dynamics of exogenous factors is described by a vector autoregressive model with Markov switching of regimes of order p (MS-VAR (p) model). The optimal strategies for predictive control have been synthesized taking into account explicit restrictions on control variables according to a generalized criterion, which is a linear combination; a) the expected values of quadratic forms in state and control; b) the quadratic form of the expected values of the states of the system; c) linear part - the expected value of the state of the system.
Keywords
стохастические системы,
марковские скачки,
многомерная модель регрессии,
прогнозирующее управление,
ограничения,
stochastic systems,
Markov jumps,
multidimensional regression,
model predictive control,
constrainsAuthors
Dombrovskii Vladimir V. | Tomsk State University | dombrovs@ef.tsu.ru |
Pashinskaya Tatiana Yu. | Tomsk State University | tatyana.obedko@mail.ru |
Всего: 2
References
Costa O.L.V., Fragoso M.D., Marques R.P. Discrete-time Markov jump linear systems. New York : Springer, 2005. 286 p.
Dombrovskii V., Obedko T. Feedback predictive control strategies for investment in the financial market with serially correlated returns subject to constraints and trading costs // Optimal control applications and methods. 2017. V. 38, No. 6. P. 908-921.
Mayne D.Q. Model predictive control: Recent developments and future promise // Automatica. 2014. V. 50, No.12. P. 2967-2986.
Farina M., Giulioni L., Scattolini R. Stochastic model predictive control with chance constraints : a review // Journal of Process Control. 2016. V. 44, No. 8. P. 53-67.
Домбровский В.В., Объедко Т.Ю. Управление с прогнозированием системами с марковскими скачками при ограничениях и применение к оптимизации инвестиционного портфеля // Автоматика и телемеханика. 2011. № 5. С. 96-112.
Henandez-Medjias M.A., Sala A., Querol A., Arino C. Multiple-Horizon predictive control for Markov/switched linear systems // IFAC-PapersOnLine. 2015. V. 48 (23). P. 230-235.
Tonne J., Jilg M., Stursberg O. Constrained Model Predictive Control of High Dimensional Jump Markov Linear Systems // American Control Conference. Palmer House Hilton. July 1-3, Chicago, IL. 2015. P. 2993-2998.
Chitraganti S., Aberkane S., Aubrun C., Valencia-Palomo G., Dragan V. On control of discrete-time state-dependent jump linear systems with probabilistic constraints: a receding horizon approach // Systems & Control Letters. 2014. V. 74. P. 81-89.
Lu J., Xi Y., Li D. Stochastic model predictive control for probabilistically constrained Markovian jump linear systems with additive disturbance // Int. J. Robust Nonlinear Control. 2017. P. 1-15.
Sala A., Henandez-Medjias M.A., Arino C. Stable receding-horizon scenario predictive control for Markov-jump linear systems // Automatica. 2017. V. 86. P. 121-128.
Patrinos P., Soparasakis P., Sarimveis H., Bemporad A. Stochastic model predictive control for constrained discrete-time Markovian switching systems // Automatica. 2014. V. 50, No. 10. P. 2504-2514.
Dombrovskii V.V., Obyedko T.Yu., Samorodova M. Model predictive control of constrained Markovian jump nonlinear stochastic systems and portfolio optimization under market frictions // Automatica. 2018. V. 87, No. 1. P. 61-68.
Домбровский В.В., Пашинская Т.Ю. Прогнозирующее управление системами с марковскими скачками и авторегрессионным мультипликативным шумом с марковским переключением режимов // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2018. № 44. С. 4-9.
Krolzig H.-M. Markov Switching Vector Autoregressions. Modelling, Statistical Inference and Application to Business Cycle Analysis. Berlin : Springer, 1997. 357 p.
Elliott R.J., Aggoun L., Moore J.B. Hidden Markov models: Estimation and control. Berlin, Heidelberg, New York : Springer, 1995. 382 p.