Detection of moving object using order statistics | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 48. DOI: 10.17223/19988605/48/5

Detection of moving object using order statistics

There are known problems of detecting a signal in the background noise, in which the statistical properties of the signal and noise are the same and their only difference are the energies (variances). In its simplest form, a detection operation is the task of testing two statistical hypotheses: null hypothesis Н0 - data refer only to noise and alternative hypothesis Н1 - data refer to the combined effect of signal and noise. The detection model in these tasks is usually represented as an energy threshold set above the average interference value. The literature also describes the algorithm for detecting signals in the background of noise, based on the statistical properties of truncated order statistics (TOS-filter). The purpose: a comparison of the results of the detection of a moving object by a fixed observer using the “classical” problem of testing two hypotheses and for the problem of detection using a TOS -filter. Methods: if for the “classical” problem of testing two hypotheses all the parameters of the model can be calculated analytically, then for the task of testing two hypotheses using the TOS, due to the complexity of the analytical model, all the parameters of the model can be calculated only by statistical simulation of the TOS filter, which is implemented very simply. The author is not aware of works in which order statistics would be applied to detection tasks. According to the results of statistical simulation of the probability of detecting a moving object crossing an area controlled by a fixed observer, it is shown that using an TOS filter provides a gain compared to the “classical” task of testing two hypotheses. The gain is achieved due to the fact that if the “classical” algorithm for decision-making uses only vector X (a single observation act), then the proposed algorithm has a matrix X(i)j, in which the current vector Xj is one of the columns. The TOS filter works on the principle of a sliding window, each new vector Xj with the index c + 1 (c is the number of columns of the matrix) displaces the vector Xj with the index 1 from the matrix X(i)j. The fact that for a moving object the distance to the observer changes (signal/noise ratio changes) imposes restrictions on the time of the single act of observation T0 and on the value of c. The use of an TOS-based (two-threshold) algorithm in the problem of detecting a moving object by a stationary observer allows you to provide a significantly higher probability of detection Pdet at a given probability of false alarm Pfal compared to the “classical” algorithm for testing two hypotheses or with fixed probabilities of detecting Pdet and a false alarm To ensure overlap of a given area with a smaller number of fixed observers.

Download file
Counter downloads: 183

Keywords

порядковая статистика, проверка статистических гипотез, системы обнаружения, статистическое моделирование, order statistics, statistical hypotheses testing, detection systems, statistical simulation

Authors

NameOrganizationE-mail
Rudko Igor M.V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciencesigor-rudko@mail.ru
Всего: 1

References

Левин Б.Р. Теоретические основы статистической радиотехники. М. : Сов. радио, 1968. Т. 2. 504 c.
Urick R.J. Principles of underwater sound. McGraw-Hill Book Company, 1975. 445 p.
Рудько И.М. Статистические свойства суммы членов усеченного вариационного ряда // Вестник Томского государствен ного университета. Управление, вычислительная техника и информатика. 2013. № 1 (22). С. 124-130.
Рудько И.М. Применение порядковых статистик в задачах обнаружения // Управление большими системами. М. : ИПУ РАН, 2012. Вып. 37. C. 63-83.
Рудько И.М. Применение порядковых статистик в задачах обнаружения в частотной области // Управление большими системами. М. : ИПУ РАН, 2016. Вып. 62. С. 6-29.
David H.A., Nagaraja H.N. Order Statistics. Wiley Series in Probability and Statistics, 2003. 458 p.
Левин Б.Р. Теоретические основы статистической радиотехники. М. : Сов. радио, 1969. Т. 1. 752 c.
Burdic W.S. Acoustic system analysis. Englewood Cliffs, NJ : Prentice Hall Inc., 1984. V. 392.
Абрамянц Т.Г., Галяев А.А., Маслов Е.П., Рудько И.М., Яхно В.П. Уклонение подвижного объекта в конфликтной среде от обнаружения системой разнородных наблюдателей // Проблемы управления. 2015. № 2. C. 31-37.
 Detection of moving object using order statistics | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 48. DOI: 10.17223/19988605/48/5

Detection of moving object using order statistics | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 48. DOI: 10.17223/19988605/48/5

Download full-text version
Counter downloads: 633