3D object identification based on global shape descriptors | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 48. DOI: 10.17223/19988605/48/7

3D object identification based on global shape descriptors

The rapid development of laser scanning technologies leads to the emergence of new challenges and opportunities for the use of these technologies in various applications and fields. Typical examples of such tasks are classification and recognition (identification) of objects. One way to solve such problems is to use global descriptors of object shape, but it is not always possible to achieve the required accuracy with given requirements for the speed of algorithm. Difficulties arise when the base of reference objects in which search is carried out is big, but search algorithm is required to work in real time. The paper proposes a method of sequential application of global descriptors, allowing the first stage to produce a "rough" screening of obviously different objects, and then to apply more accurate algorithms on a significantly reduced object base. Let's formulate the proposed method of quick search of the object in the database. 1. A “rough” comparison of the input object with all database objects using the D1 descriptor. Remove/exclude from consideration of those objects of the database, the distance to which turned out to be greater than the established threshold β1 (“dissimilar” to the criterion D1 objects). 2. Then we calculate the eigenvalues λ1, λ2, λ3 of the covariance matrix, of the coordinates of the set of points Pi of the input ob- 3 ject. Exclude from consideration database objects, tor which ∑|λkii∣ > β2, k - object index(number) in the database , β2 - some i=1 threshold level. 3. Search the remaining set of objects using a more accurate descriptor (GASD, SPIN). Note that in order to improve the accuracy of recognition, it is possible to use not one specific descriptor, but several (GASD, SPIN, D1). We suggest sorting all database objects by the distance to the object you want to recognize and each database object is assigned a certain rank (its number in an ordered array). The number of arrays is determined by the number of descriptors used, and the total rank of each object is calculated as the arithmetic mean of its ranks in each array. Then the closest "similar" database object is the one that has the minimum rank. The effect reached at the same time consists in significant increase in speed of identification of an object (in certain cases much and more) without compromising accuracy. To improve the accuracy of object identification, the paper also proposes a method of simultaneous use of existing global shape descriptors. Experimental studies have shown that the application of the proposed method provides greater accuracy of object identification than any of the descriptors individually.

Download file
Counter downloads: 185

Keywords

3D объект, облако точек, распознавание, идентификация, глобальные дескрипторы формы, 3D object, point cloud, identification, recognition, global shape descriptors

Authors

NameOrganizationE-mail
Pristupa Andrey V.Tomsk State Universitypristupa@sibmail.com
Lapatin Ivan L.Tomsk State Universityilapatin@mail.ru
Zamyatin Alexander V.Tomsk State Universityzamyatin@mail.tsu.ru
Всего: 3

References

Hatao N., Kagami S. Cluster-Based SJPDAFs for Classification and Tracking of Multiple Moving Objects // Field and Service Robotics. Springer International Publishing, 2015. P. 303-317.
Martinez M.A., Martinez J.L., Morales J. Motion Detection from Mobile Robots with Fuzzy Threshold Selection in Consecutive 2D Laser Scans' // Electronics. 2015. V. 4, No.1. P. 82-93.
Yan Zhuang, Guojian He, Huosheng Hu, Zhenwei Wu novel outdoor scene-understanding framework for unmanned ground vehicles with 3D laser scanners // Transactions of the Institute of Measurement and Control. 2015. V. 37, No. 4. P. 435-445.
Rejas J.I. et al. A varying density 3D laser scanner for unmanned ground vehicles mapping and obstacle detection // Design of Circuits and Integrated Circuits (DCIS), 2014 Conference on. IEEE, 2014. P. 1-6.
Besl P., McKay H. A method for registration of 3-d shapes // IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992. V. 14, No. 2. P. 239-256.
Chen Y., Medioni G. Object modelling by registration of multiple range images // Image and Vision Computing. 1992. V. 10. No. 3. P. 145-155.
Дышкант Н.Ф., Местецкий Л.М. Сравнение однолистных поверхностей, полученных при 3D сканировании ∕∕ Труды 18-й международной конференции по компьютерной графике и машинному зрению ГрафиКон'2008. М., 2008. С. 270-277.
Dyshkant N. Measures for Surface Comparison on Unstructured Grids with Different Density // Lecture Notes in Computer Science: Discrete Geometry for Computer Imagery. 2011. V. 6607. P. 501-512.
Дышкант Н.Ф. Эффективн^ге алгоритмы сравнения поверхностей, заданных облаками точек : дис. канд. физ.-мат. наук. М., 2011.
Lowe D.G. Object recognition from local scale-invariant features // Proc. of the International Conference on Computer Vision (ICCV '99). 1999. V. 2. P. 142-150.
Calonder M., Lepetit V., Strecha C., Fua P. BRIEF: Binary Robust Independent Elementary Features // Proc. of the 11th European Conference on Computer Vision, Heraklion, Crete, Greece. 2009. Pt. IV. P. 778-792.
Leutenegger S., Chli M., Siegwart R.Y. BRISK: Binary Robust Invariant Scalable Keypoints // Proc. of the 2011 International Conference on Computer Vision (ICCV '11). 2011. P. 2548-2555.
Osada R., Funkhouser T., Chazelle B., Dobkin D. Shape distributions // ACM Transactions on Graphics (TOG). 2002. V. 21, is. 4. P. 807-832.
Vrani'c D.V., Saupe D.V. Description of 3D-shape using a complex function on the sphere // Proc. of the IEEE International Conference on Multimedia and Expo (ICME 2002). Lausanne, 2002. P. 177-180.
Левашев С.П., Абраменко А.А. Анализ изображений сравнением замкнутых контуров с помощью Фурье-дескрипторов // Фундаментальные и прикладные аспекты компьютерных технологий и информационной безопасности : сб. ст. I Всерос. науч.-техн. конф. молодых ученых, аспирантов и студентов. Ростов н/Д. : Изд-во ЮФУ, 2015. C. 37-40.
Do Monte Lima J.P.S., Teichrieb V. An efficient global point cloud descriptor for object recognition and pose estimation // Proc. of the 29th SIBGRAPI Conference on Graphics, Patterns and Images, Sao Paulo, Brazil, 4-7 October 2016. P. 56-63.
Johnson A.E., Hebert M. Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes // IEEE Trans. Pattern Analysis and Machine Intelligence. 1999. V. 21 (5). P. 433-449.
Крыловецкий А.А, Черников И.С. Нормализация 3D-модели для вычисления интегрального спинового изображения // Известия Южного федерального университета. Технические науки. 2012. № 6. С. 135-139
Princeton Shape Benchmark. URL: http://shape.cs.princeton.edu/benchmark/ (accessed: 31.08.2018).
 3D object identification based on global shape descriptors | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 48. DOI: 10.17223/19988605/48/7

3D object identification based on global shape descriptors | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 48. DOI: 10.17223/19988605/48/7

Download full-text version
Counter downloads: 630