Optimal estimate of the states of a generalized asynchronous event flow with an arbitrary number of states under conditions of unextendable dead time | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 49. DOI: 10.17223/19988605/49/5

Optimal estimate of the states of a generalized asynchronous event flow with an arbitrary number of states under conditions of unextendable dead time

In this paper, we consider a generalized asynchronous flow of events, the accompanying process (intensity) of which is a piecewise constant random process λ(t) with n states: λ(t) takes values from a discrete set of values {λ1,...,λn} , λ12>...>λn ≥0. Let's say that that the i th state of the process λ(t) holds if λ(t) = λi, i = 1,n , n = 2,3,.... If the ith state takes place, then during the time interval when λ(t) = λ/ there is a Poisson flow of events with parameter (intensity) λi∙, i = 1, n . The duration of the process λ(t) (flow) in the i th state is distributed according to the exponential law with parameter αi∙, i = 1, n . We consider the stationary mode of the flow functioning, therefore we can neglect transition processes on the observing semi-interval [t0, t) , where t0 - the beginning of observation, t - the ending of observation. In these premises, λ(t) is an accompanying stationary piecewise constant hidden transitive Markov process with an arbitrary number of states n ( n = 2,3,... ). At the moment of transition of the process λ(t) from the i th state to the j th, an additional event is triggered with probability pij , i, j = 1, n , j ≠ i; the transition occurs at an arbitrary time moment, not related to the moment of occurrence of the Poisson flow event with parameter λi, while initiating an additional event occurs in the j th state; transition and initiation of an additional event occur instantly. After each registered event at the time moment tk ( both the event of the Poisson flow with parameter λi and the additional event), there is a period of fixed duration T (dead time), during which other events of the generalized asynchronous event flow are inaccessible to observation. An event that occurs during the dead time doesn't cause an extension of its period (unextendable dead time) At the end of the dead time period, the first event that occurred again creates a period of dead time of duration T and etc. It is required, on the basis of the moments of occurrence of events (from moment t0 to moment t ) to estimate the state of the process λ(t) at the moment t. We denote the estimate of the state of the process λ(t) at the time moment t as λ(t). We found an explicit form for a posteriori probabilities w(λi ǀ t) = w(λi ǀ t 1,..., tm,t), i = 1,n , that at the time moment t the value of the process λ(t)= λi (m is the number of events that occurred at the time moments t1,..., tm at the observation interval (t0 , t) ), here n ∑ w(λi ǀ t) = 1. The decision on the state of the process λ(t) is made according to criterion of a posteriori probability maximum. i=1. The algorithm for calculating a posteriori probabilities w(λj ǀ t)), j = 1, n , at any time moment t (t ≥ t0 = 0 ) was formulated. In parallel, as we calculate a posteriori probabilities w(λj ǀ t), j = 1,n , we can make a decision on the state of the process λ(t) at the current time moment t : λ(t) = λi , if w(λj ǀ t) = max w(λj ǀ t), j = 1,n .

Download file
Counter downloads: 126

Keywords

unextendable dead time, a posteriori probability, optimal states estimation, generalized asynchronous doubly stochastic flow of events, непродлевающееся мертвое время, оптимальная оценка состояний, апостериорная вероятность, обобщенный асинхронный дважды стохастический поток событий

Authors

NameOrganizationE-mail
Gortsev Alexander M.Tomsk State Universitydekanat@fpmk.tsu.ru
Nezhel'skaya Lyudmila A.Tomsk State Universityludne@mail.ru
Всего: 2

References

Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. М. : Наука, 1969. 424 с.
Хазен Э.М. Методы оптимальных статистических решений и задачи оптимального управления. М. : Сов. радио, 1968. 256 с.
Хинчин А.Я. Работы по математической теории массового обслуживания. М. : Физматгиз, 1963. 235 с.
Левин Б.Р. Теоретические основы статистической радиотехники. М. : Сов. радио, 1968. Кн. 2. 504 с.
Горцев А.М., Нежельская Л.А. Оптимальная оценка состояний обобщенного асинхронного потока событий с произвольным числом состояний ∕∕ Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2019. № 47. С. 12-23.
Gortsev A.M., Nezhelskaya L.A. An asynchronous double stochastic flow with initiation of superfluous events // Discrete Mathematics and Applications. 2011. V. 21, is. 3. P. 283-290.
Gortsev A.M., Klimov I.S. Estimation of the non-observability period and intensity of Poisson event flow // Radiotekhnika. 1996. No. 2. P. 8-11.
Gortsev A.M., Klimov I.S. An estimate for intensity of Poisson flow of events under condition of its partial missing // Radiotekhnika. 1991. No. 12. P. 3-7.
Nezhelskaya L.A. Optimal state estimation in modulated MAP event flows with unextendable dead time // Communications in Computer and Information Science. 2014. V. 487. P. 342-350.
Nezhel'skaya L.A. Probability density function for modulated MAP event flows with unextendable dead time // Communications in Computer and Information Science. 2015. V. 564. P. 141-151.
Lucantoni D.M., Neuts M.F. Some steady-state distributions for the MAP/SM/1 queue // Communications in Statistics Stochastic Models. 1994. V. 10, is. 3. P. 575-598.
Апанасович В.В., Коляда А.А., Чернявский А.Ф. Статистический анализ случайных потоков в физическом эксперименте. Минск : Университетское, 1988. 256 с.
Neuts M.F. A versatile Markovian point process // J. of Applied Probability. 1979. V. 16. P. 764-779.
Lucantoni D.M. New results on the single server queue with a batch markovian arrival process // Communications in Statistics Stochastic Models. 1991. V. 7. P. 1-46.
Башарин Г.П., Кокотушкин В.А., Наумов В.А. О методе эквивалентных замен расчета фрагментов сетей связи. Ч. 1 // Известия АН СССР. Техническая кибернетика. 1979. № 6. С. 92-99.
Kingman J.F.C. On doubly stochastic Poisson process // Proc. of the Cambridge Philosophical Society. 1964. V. 60, is. 4. P. 923 930.
Cox D.R. The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables // Proceedings of the Cambridge Philosophical Society. 1955. V. 51, is. 3. P. 433-441.
Vishnevsky V.M., Larionov A.A., Smolnikov R.V. Optimization of topological structure of broadband wireless networks along the long traffic routes // Distributed Computer and Communication Networks: Control, Computation, Communications: proc. of the eighteenth Int. Scientific Conf. (DCCN-2015) (Moscow, October 19-22, 2015). Moscow : ICS RAS, 2015. P. 27-35.
Basharin G.P., Gaidamaka Y.V., Samouylov K.E. Mathematical theory of teletraffic and its application to the analysis of multi service communication of next generation networks // Automatic Control and Computer Science. 2013. V. 47, is. 2. P. 62-69.
Дудин А.Н., Клименок В.И. Системы массового обслуживания с коррелированными потоками. Минск : Изд-во БГУ, 2000. 175 с.
 Optimal estimate of the states of a generalized asynchronous event flow with an arbitrary number of states under conditions of unextendable dead time | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 49. DOI: 10.17223/19988605/49/5

Optimal estimate of the states of a generalized asynchronous event flow with an arbitrary number of states under conditions of unextendable dead time | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 49. DOI: 10.17223/19988605/49/5

Download full-text version
Counter downloads: 533