Structural and parametric identification of the process model using a rotary pulsation machine
The paper addresses the task of structural-parametric identification of a model describing the technological process of obtaining hop extract at the exit of using a rotary pulsation machine (RPM). In the literature, there have been attempts to simulate the process at the output of the RPM based on regression models of experiment planning, but their construction requires a large amount of experimental data, which is associated with repeated interruption of the technological process for taking measurements. This makes it impossible to use a passive experiment for data acquisition. Based on equally spaced measurements of the input and output effects, it is proposed to construct an identifier matrix. Basing on the values of its zero column, a continuous fraction is restored, which is converted into a discrete transfer function. Using the inverse formula for a consistent z-transform, the zeros and poles of the continuous transfer function (which is the final goal of the simulation) are determined. The transformation of the denominator polynomial of the continuous transfer function leads to the determination of the time constant T, the transfer coefficient K is determined by the finite value theorem. The constructed transfer function allows obtaining a model of any reaction of the object, including the RPM acceleration characteristics. The empirical data allowed the authors to determine that the model of the desired RPM acceleration characteristics corresponds to the aperiodic link of the first order. However, in the discrete transfer function, obtained using the apparatus of continued fractions, there is an additional pole and zero. This indicates the presence of a nonlinear relationship between the input process, which is the quantitative ratio of unhopped wort and granulated hops, and the output process - the content of isohumulone in the hop extract. Additional technological parameters are the temperature t at which the hopping process occurs and the rotor speed n. Studies have shown that for different values of t and n, the parameters of the transfer function change. The resulting models allow selecting the optimal technological parameters of the processed medium, which will improve the performance of isohumulone output.
Keywords
rotary pulsation machine,
technological process,
transfer function,
continuous fraction,
structural and parametric identification,
роторно-пульсационный аппарат,
технологический процесс,
передаточная функция,
непрерывная дробь,
структурно-параметрическая идентификацияAuthors
Novoseltseva Marina A. | Kemerovo State University | man300674@gmail.com |
Gutova Svetlana G. | Kemerovo State University | gsg1967@mail.ru |
Kagan Elena S. | Kemerovo State University | kaganes@mail.ru |
Borodulin Dmitry M. | Kemerovo State University | borodulin_dmitri@list.ru |
Всего: 4
References
Novoseltseva M.A., Gutova S.G., Kazakevich I.A. Structural and parametric identification of a multisinusoidal signal model by using continued fractions // 2018 Int. Russian Automation Conf. (RusAutoCon 2018). 9-16 Sept. Sochi, Russia. 2018. P. 60-64.
Waadeland H., Lorentzen L. Continued Fractions. Springer, 2008. 308 p.
Iosifescu M., Kraaikamp C. Metrical Theory of Continued Fractions. Springer, 2002. 383 p.
Cuyt A.A.M., Petersen V., Verdonk B., Waadeland H., Jones W.B. Handbook of Continued Fractions for Special Functions. Springer, 2008. 431 p.
Kartashov V.Ya., Novoseltseva M.A. Structural-and-Parametric Identification of Linear Stochastic Plants Using Continuous Fractions // Automation and Remote Control. 2010. V. 71, No. 8. Р. 1727-1740.
Карташов В.Я., Новосельцева М.А. Динамическая оценка риска в сложных системах. Кемерово : Кемеровский гос. ун-т, 2012. 212 с.
Иванец В.Н., Бакин И.А., Иванец Г.Е. Интенсификация процессов гомогенизации и диспергирования при получении сухих, увлажненных и жидких комбинированных продуктов // Техника и технология пищевых производств. 2012. № 3. С. 34-45.
Кухленко А.А., Орлов С.Е., Иванова Д.Б., Василишин М.С. Процесс растворения полидисперсных материалов в установке с вращающимся пульсационным аппаратом // Журнал инженерной физики и теплофизики. 2015. Т. 88, №. 1. С. 23-34.
Василишин М.С., Иванов О.С., Иванова Д.Б., Карпов А.Г., Кухленко А.А., Орлов С.Е. Кинетика массообмена при растворении дисперсных материалов в роторно-пульсационном аппарате // Химическая технология. 2013. Т. 14, № 2. С. 100-103.
Фёдоров A.B., Шульгин A.B., Василишин М.С., Иванов О.С., Иванова Д.В., Карпов А.Г. К оценке длительности процесса периодического растворения дисперсного материала в роторно-пульсационном аппарате // Инженернофизический журнал. 2011. Т. 84, № 4. С. 664-669.
Червяков В.М., Однолько В.Г. Использование гидродинамических и кавитационных явлений в роторных аппаратах. М. : Машиностроение, 2008. 116 с.
Промтов М.А. Пульсационные аппараты роторного типа: теория и практика. М. : Машиностроение, 2001.247 с.
Промтов М.А., Червяков В.М. Кинетика растворения NaCl в воде при обработке в роторно-импульсном аппарате // Известия вузов. Химия и химическая технология. 2000. Т. 43, № 6. С. 120-123.
Tan A.H., Godfrey K.R. Industrial Process Identification. Perturbation Signal Design and Applications. Springer, 2019. 217 p.
Пупков К.А, Егупов Н.Д., Гаврилов К.И. Методу: робастного, нейро-нечеткого и адаптивного управления : учебник / под ред. Н.Д. Егупова. М. : Изд-во МГТУ им. Н.Э. Баумана, 2001. 743 с.
Карабутов Н.Н. Структурная идентификация систем: анализ динамических структур. М. : МГИУ, 2008. 160 с.
Masaki I. Subspace identification with moment matching // Automatica. 2019. V. 99, No. 1. P. 22-32.
Первушин В.Ф. О непараметрической идентификации линейных динамических объектов // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2013. № 4 (25). C. 95-104.
Shumikhin A.G., Aleksandrova A.S. Identification of a controlled object using frequency responses obtained from a dynamic neural network model of a control system // Computer Research and Modeling. 2017. V. 9, is. 5. P. 729-740.
Voevoda A.A., Troshina G.V. Active identification of linear stationary dynamic objects on base of the Fisher information matrix: the steady state // 12th Int. Conf. on Actual Problems of Electronics Instrument Engineering (APEIE). Novosibirsk, Russia, 24 Oct. 2014. P. 745-748.
Wang Ji, Le Vang T., Pyrkin A.A., Kolyubin S.A., Bobtsov A.A. Identification of Piecewise Linear Parameters of Regression Models of Non-Stationary Deterministic Systems // Automation and Remote Control. 2018. V. 79, No. 12. P. 2159-2168.
Gilberto P., Yang Wa, Boli Ch., Thomas P. Identification of multi-sinusoidal signals with direct frequency estimation: an adaptive observer approach // Automatica. 2019. V. 99, No. 1. P. 338-345.
Cerovsky Z., Lev M. Permanent Magnet Synchronous Machine Parameters Identification for Load Characteristics Calculation // Automatica. 2018. V. 56, No. 2, P. 241-246.
Weerts H.H.M., Van den Hof P.M.J., Dankers A.G. Identifiability of linear dynamic networks // Automatica. 2018. V. 89, No. 4. P. 247-258.
Jafarov S.M., Mustafayeva A.M. Identification of dynamic objects under uncertainty and non-stationarity sing etalon transformers // Procedia Computer Science. 2017. V. 120. P. 561-567.
Utkin A.V. Synthesis of a Control System for a Steam Turbine // Automation and Remote Control. 2018. V. 79, is.12. P. 2186-2202.
Dorf R.C., Bishop R.H. Modern control systems. Harlow : Piarson, 2011. 832 p.
Ljung L., Glad T. Modeling & Identification of Dynamic Systems. Lund : Studentlitteratur AB, 2016. 402 p.
Isermann R., Munchhof M. Identification of Dynamic Systems. Berlin : Springer, 2011. 705 p.