Adaptive efficient estimation for a function in heteroscedastic regression | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 49. DOI: 10.17223/19988605/49/9

Adaptive efficient estimation for a function in heteroscedastic regression

The asymptotic properties of the adaptive improved model selection procedure for estimating an unknown function in heteroskedastic regression are studied. It has been established that the procedure is asymptotically effective in the sense of root mean square risk, i.e. the asymptotic root-mean-square risk of the procedure coincides with the corresponding Pinsker constant, which provides an accurate lower limit of risk for all possible estimates. The results of numerical simulation are presented.

Download file
Counter downloads: 126

Keywords

mean square risk, oracle inequalities, nonparametric heteroscedastic regression, improved estimation, асимптотическая эффективность, оракульные неравенства, среднеквадратический риск, улучшенное оценивание, непараметрическая гетероскедастичная регрессия, asymptotic efficiency

Authors

NameOrganizationE-mail
Pchelintsev Evgeny A.Tomsk State Universityevgen-pch@yandex.ru
Perelevskiy Svyatoslav S.Tomsk State Universityslavaperelevskiy@mail.ru
Всего: 2

References

Brua J.-Y. Asymptotically efficient estimators for nonparametric heteroscedastic regression models // Statistical Methodologie. 2009. Vol. 6, No. 1. P. 47-60.
Pchelintsev E.A., Pchelintsev V.A., Pergamenshchikov S.M. Improved robust model selection methods for a Levy nonparametric regression in continuous time // Journal of Nonparametric Statistics. 2019. P. 1-17. DOI: 10.1080/10485252.2019.1609672.
Galtchouk L., Pergamenshchikov S. Sharp non-asymptotic oracle inequalities for nonparametric heteroscedastic regression models // Journal of Nonparametric Statistics. 2009. V. 21, No. 1. P. 1-16.
Pinsker M.S. Optimal filtration of square integrable signals in Gaussian white noise // Problems Transimis. information. 1981. N 17. P. 120-133.
Galtchouk L., Pergamenshchikov S. Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression // Journal of the Korean Statistical Society. 2009. V. 38, No. 4. P. 305-322.
Efroimovich S. Sequential design and estimation in heteroscedastic nonparametric regression // Sequential Analysis. 2007. Vol. 26. P. 3-25.
Efroimovich S., Pinsker M. Sharp - optimal and adaptive estimation for heteroscedastic nonparametric regression // Statistica Sinica. 1996. Vol. 6. P. 925-942.
Ibragimov I.A., Hasminskii R.Z. Statistical Estimation: Asymptotic Theory. New York : Springer, 1981.
Пчелинцев Е.А., Перелевский С.С. Адаптивное оценивание в гетероскедастичной непараметрической регрессии // Вест ник Томского государственного университета. Математика и механика. 2019. № 57. С. 38-52.
Belomestny D., Reiss M. Spectral calibration of exponential Levy models // Finance and Stochastics. 2006. Vol. 10, No 4. P. 449 474.
Pchelintsev E.A., Perelevskiy S.S., Makarova I.A. Improved nonparametric estimation of the drift in diffusion processes // Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2018. Vol. 160, No 2. P. 364-372.
Galtchouk L., Pergamenshchikov S. Adaptive sequential estimation for ergodic diffusion processes in quadratic metric // Journal of Nonparametric Statistics. 2011. V. 23, No. 2. P. 255-285.
Goldfeld S.M., Quandt R.E. Nonlinear Methods in Econometrics. London : North-Holland, 1972.
Cai T., Wang L. Adaptive variance function estimation in heteroscedactic nonparametric regression // Annals of Statistics. 2008. V. 36, No. 5. P. 2025-2054.
 Adaptive efficient estimation for a function in heteroscedastic regression | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 49. DOI: 10.17223/19988605/49/9

Adaptive efficient estimation for a function in heteroscedastic regression | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2019. № 49. DOI: 10.17223/19988605/49/9

Download full-text version
Counter downloads: 533