Analysis of expected revenues in open Markov networks with various features
A study is made of a system of difference-differential equations, which satisfy the expected income of open Markov queuing networks with various features. The number of network states in this case and the number of equations in this system are infinite. The flows of applications entering the network are the simplest and independent, the service times of applications are distributed according to exponential laws. Revenues from transitions between network states are deterministic functions that depend on its state and time, and system revenues per unit time, when they do not change their states, depend only on these states. To find the expected revenues of network systems, a modified method of successive approximations is proposed, combined with the series method.
Keywords
the method of successive approximations,
open queueing network,
the system of difference-differential equations (DDE),
метод последовательных приближений,
открытая сеть массового обслуживания,
система разностно-дифференциальных уравненийAuthors
Kopat Dmitry Ya. | Grodno State University | dk80395@mail.ru |
Matalytski Mihail A. | Grodno State University | m.matalytski@gmail.com |
Всего: 2
References
Маталыцкий М.А., Науменко В.В. Стохастические сети с нестандартными перемещениями заявок. Гродно : Гродненский гос. ун-т, 2016. 347 с.
Статкевич С.Э. Анализ HM-сети с ненадёжными системами обслуживания и случайными доходами от переходов между её состояниями // Вестник Гродненского государственного университета. Сер. 2. 2010. № 3. С. 40-52.
Matalytski M. Finding non-stationary state probability of G-networks with signal and customers batch removal // Probability in the Engineering and Informational Sciences. 2017. V. 31, No. 4. P. 346-412.
Fourneaua J.M., Gelenbe E., Surosc R. G-networks with multiple classes of negative and positive customers // Theoretical Com puter Science. 1996. V. 155, is. 1. P. 141-156.
Gelenbe E. G-Networks: Multiple Classes of Positive Customers, Signals, and Product Form // Results Performance Evaluation of Complex Systems: Techniques and Tools. Springer, 2002. P. 1-16. (Lecture Notes in Computer Science. V. 2459)
Gelenbe E. G-networks with signals and batch removal // Probability in the Engineering and Informational Sciences. 1993. V. 7. P. 335-342.
Gelenbe E., Labed A. G-networks with multiple classes of signals and positive customers // European J. of Operational Research. 1998. V. 108. P. 293-305.
Gelenbe E. Product form queueing networks with negative and positive customers // J. of Applied Probability. 1991. V. 28. P. 656-663.
Ховард Р. Динамическое программирование и марковские процессы. М. : Сов. радио, 1964. 109 с.
Gelenbe E. G-networks: a unifying model for neural and queueing networks // Annals of Operations Research. 1994. V. 48. P. 433-461.
Паньков А.В. Анализ стохастической модели расходов на содержание гибкого вычислительного кластера // Современные математические методы анализа и оптимизации информационно-телекоммуникационных сетей : материалы 20-й междунар. науч. конф., Минск, 26-29 янв. 2009 г. / ред. А.Н. Дудин [и др.]. Минск : РИВШ, 2009. Вып. 20. С. 184-188.
Маталыцкий М.А. О некоторых результатах анализа и оптимизации марковских сетей с доходами и их применении // Автоматика и телемеханика. 2009. № 10. P. 97-113.