Active parametrical identification of stochastic linear continuous-discrete systems based on the experiment design in the presence of abnormal observations
The procedure of active parametrical identification of stochastic linear continuous-discrete systems including robust estimation of parameters and optimal design of input signals is offered. A general case of entering unknown parameters into the equations of state and observation, initial conditions and covariance matrices of system noise and measurements is considered. The efficiency of this procedure is demonstrated by the example of a direct current motor control system.
Keywords
робастное оценивание,
оптимальный входной сигнал,
аномальные наблюдения,
непрерывно-дискретная система,
robust estimation,
optimal input signal,
anomalous observations,
continuous-discrete systemAuthors
| Chubich Vladimir M. | Novosibirsk State Technical University | chubich@ami.nstu.ru |
| Filippova Elena V. | Novosibirsk State Technical University | e.filippova@corp.nstu.ru |
Всего: 2
References
Kwakernaak, H. & Sivan, R. (1972) Linear Optimal Control Systems. New York: John Wiley Sons. DOI: 10.1115/1.3426828
Pronzato, L. & Pazman, A. (2013) Design of Experiments in Nonlinear Models. Asymptotic Normality, Optimality Criteria and Small-Sample Properties. New York: Springer. DOI: 10.1007/978-1-4614-6363-4
Fedorov, V.V. (1971) Teoriya optimal’nogo eksperimenta [Theory of optimal experiment]. Moscow: Nauka.
Ermakov, S.M. & Zhiglyavsky, A.A. (1987) Matematicheskaya teoriya optimal’nogo eksperimenta [Mathematical theory of optimal experiment]. Moscow: Nauka.
Denisov, V.I., Chubich, V.M. & Filippova, E.V. (2018) The choice of the parameterization of the input signal in the problem of experiment design for model stochastic systems. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki - Proc. of Tula State University. Technical Science. 2. pp. 387-397.
Chubich, V.M. & Filippova, E.V. (2017) Aktivnaya identifikatsiya stokhasticheskikh dinamicheskikh sistem. Planirovanie eksperimenta dlya modeley diskretnykh sistem [Active identification of stochastic dynamic systems. Design of experiments for models of discrete systems]. Novosibirsk: NSTU.
Filippova, E.V. (2018) Algorithms of parametrical identification of stochastic linear continuous-discrete systems based on robust filtering. Evraziyskoe Nauchnoe Ob"edinenie - Eurasian Scientific Association. 11(45). pp. 86-90.
Chen, B., Liu, X., Zhao, H. & Principe, J. (2017) Maximum correntropy Kalman filter. Automatica. 76. pp. 70-77. DOI: 10.1016/j.automatica.2016.10.004
Izanloo, R., Fakoorian, S.A., Yazdi, H.S. & Simon, D. (2016) Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise. Annual Conference on Information Science and Systems (CISS), Princeton, USA. pp. 500505. DOI: 10.1109/CISS.2016.7460553
Chubich, V.M. & Filippova, E.V. (2018) Research of the efficiency of some robust filters for non-stationary linear continuous-discrete systems. Sovremennye naukoemkie tekhnologii - Modern High Technologies. 12(1). pp. 153-161.
Izmailov, A.F. & Solodov, M.V. (2008) Chislennye metody optimizatsii [Numerical optimization methods]. Moscow: Fizmat.
Antoniou, A. & Lu, W-S. (2007) Practical optimization: algorithms and engineering applications. New York: Springer. DOI:10.1007/978-0-387-71107-2
Mudrov, V.I. & Kushko, V.L. (1983) Metody obrabotki izmereniy: Kvazipravdopodobnye otsenki [Methods of measurement processing. Quasi-likelihood estimates]. Moscow: Radio i svyaz'.
Chubich, V.M. & Filippova, E.V. (2017) Information technology of active identification of stochastic dynamic systems using pa rameterization of the input signal. Evraziyskoe Nauchnoe Ob"edinenie - Eurasian Scientific Association. 11(33). pp. 63-66.
Bernaerts, K., Servaes, R.D., Kooyman, S., Versyck, K.J. & Van Impe, J. (2002) Optimal temperature input design for estimation of the Square Root model parameters: parameter accuracy and model validity restrictions. International Journal of Food Microbiology. 73. pp. 145-157. DOI: 10.1016/S0168-1605(01)00645-6
Galvanin, F., Marchesini, R., Barolo, M., Bezzo, F. & Fidaleo, M. (2016) Optimal design of experiments or parameter identification in electrodialysis models. Chemical Engineering Research and Design. 105. pp. 107-119. DOI: 10.1016/j.cherd.2015.10.048
Brasil, N., Hemerly, E. & Goes, L. (2009) Aircraft parameter estimation experiment design considering measurement colored residuals. Journal of Aircraft. 46(6). pp. 1857-1865. DOI:10.2514/1.34133
Jauberthie, C., Bournonville, F., Coton, P. & Rendell, F. (2006) Optimal input design for aircraft parameter estimation. Aerospace Science and Technology. 10. pp. 331-337. DOI:10.1016/j.ast.2005.08.002
Walter, E. & Pronzato, L. (1997) Identification ofparametric models from experimental data. Berlin: Springer-Verlag.
Ljung, L. (1987) System identification: Theory for the User. Englewood Cliffs, NJ: Prentice-Hall.